Citation: Sameh M. K. Aboul-Fotouh. Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 350-356.
Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts
English
Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts
-
-
-
[1] FLEISCH T H, BASU A, GRADASSI M J, MASIN J G. Dimethyl ether: A fuel for the 21st century[J]. Stud Surf Sci Catal, 1997, 107: 117-125.[1] FLEISCH T H, BASU A, GRADASSI M J, MASIN J G. Dimethyl ether: A fuel for the 21st century[J]. Stud Surf Sci Catal, 1997, 107: 117-125.
-
[2] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.[2] SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.
-
[3] VISHWANATHAN V, JUN K W, KIM J W, ROH H S. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J]. Appl Catal A: Gen, 2004, 276(1/2): 251-256.[3] VISHWANATHAN V, JUN K W, KIM J W, ROH H S. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J]. Appl Catal A: Gen, 2004, 276(1/2): 251-256.
-
[4] CAI G Y, LIU Z M, SHI R M, HE C Q, YANG L X, SUN C L, CHANG Y J. Light alkenes from syngas via dimethyl ether[J]. Appl Catal A: Gen, 1995, 125(1): 29-38.[4] CAI G Y, LIU Z M, SHI R M, HE C Q, YANG L X, SUN C L, CHANG Y J. Light alkenes from syngas via dimethyl ether[J]. Appl Catal A: Gen, 1995, 125(1): 29-38.
-
[5] XU M T, GOODMAN D W, BHATTACHARYYA A. Catalytic dehydration of methanol to dimethyl ether (DME) over Pd/Cab-O-Sil catalysts[J]. Appl Catal A: Gen, 1997, 149: 303-309.[5] XU M T, GOODMAN D W, BHATTACHARYYA A. Catalytic dehydration of methanol to dimethyl ether (DME) over Pd/Cab-O-Sil catalysts[J]. Appl Catal A: Gen, 1997, 149: 303-309.
-
[6] KIM S D, BAEK S C, LEE Y J, JUN K W, KIM M J, YOO I S. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl Catal A: Gen, 2006, 309(1): 139-143.[6] KIM S D, BAEK S C, LEE Y J, JUN K W, KIM M J, YOO I S. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl Catal A: Gen, 2006, 309(1): 139-143.
-
[7] VISHWANATHAN V, ROH H S, KIM J W, JUN K W. Surface properties and catalytic activity of TiO2-ZrO2 mixed oxides in dehydration of methanol to dimethyl ether[J]. Catal Lett, 2004, 96(1/2): 23-28.[7] VISHWANATHAN V, ROH H S, KIM J W, JUN K W. Surface properties and catalytic activity of TiO2-ZrO2 mixed oxides in dehydration of methanol to dimethyl ether[J]. Catal Lett, 2004, 96(1/2): 23-28.
-
[8] FEI J H, HOU Z Y, ZHU B, LOU H, ZHENG X M. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Appl Catal A: Gen, 2006, 304: 49-54.[8] FEI J H, HOU Z Y, ZHU B, LOU H, ZHENG X M. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Appl Catal A: Gen, 2006, 304: 49-54.
-
[9] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005, 147(6): 147-152.[9] YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005, 147(6): 147-152.
-
[10] KIM S M, LEE Y J, BAE J W, POTDAR H S, JUN K W. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2008, 348(1): 113-120.[10] KIM S M, LEE Y J, BAE J W, POTDAR H S, JUN K W. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2008, 348(1): 113-120.
-
[11] ZHANG Y L, SUN Q, DENG J F, WU D. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties[J]. Appl Catal A: Gen, 1997, 158(1/2): 105-120.[11] ZHANG Y L, SUN Q, DENG J F, WU D. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties[J]. Appl Catal A: Gen, 1997, 158(1/2): 105-120.
-
[12] [JP2]REUBROYCHAROEN P, VITIDSANT T, YONEYAMA Y, TSUBAKI N. Development of a new low-temperature methanol synthesis process[J]. Catal Today, 2004, 89(4): 447-454.[12] [JP2]REUBROYCHAROEN P, VITIDSANT T, YONEYAMA Y, TSUBAKI N. Development of a new low-temperature methanol synthesis process[J]. Catal Today, 2004, 89(4): 447-454.
-
[13] MAO D S, YANG W M, XIA J C, ZHANG B, SONG Q Y, CHEN Q L. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component[J]. J Catal, 2005, 230(1): 140-149.[13] MAO D S, YANG W M, XIA J C, ZHANG B, SONG Q Y, CHEN Q L. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component[J]. J Catal, 2005, 230(1): 140-149.
-
[14] BALTES C, VUKOJEVIC S, SCHÜTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008, 258(2): 334-344.[14] BALTES C, VUKOJEVIC S, SCHÜTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008, 258(2): 334-344.
-
[15] BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/Al2O3 catalysts[J]. J Catal, 2009, 267(1): 24-29.[15] BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/Al2O3 catalysts[J]. J Catal, 2009, 267(1): 24-29.
-
[16] YANG G H, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc, 2010, 132(23): 8129-8136.[16] YANG G H, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc, 2010, 132(23): 8129-8136.
-
[17] [JP2]ABOUL-FOTOUH S M K. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of γ-Al2O3 for methanol dehydration to dimethyl ether[J]. J Fuel Chem Technol, 2013, 41(9): 1077-1084.[17] [JP2]ABOUL-FOTOUH S M K. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of γ-Al2O3 for methanol dehydration to dimethyl ether[J]. J Fuel Chem Technol, 2013, 41(9): 1077-1084.
-
[18] ABOUL-GHEIT A K. Acid site strength distibution in mordenites by differential scanning calorimetry[J]. J Catal, 1988, 113(2): 490-496.[18] ABOUL-GHEIT A K. Acid site strength distibution in mordenites by differential scanning calorimetry[J]. J Catal, 1988, 113(2): 490-496.
-
[19] ABOUL-GHEIT A K. Effect of decationation and dealumination of zeolite Y on its acidity as assessed by ammonia desorption measured by differential scanning calorimetry (DSC)[J]. Thermochim Acta, 1991, 191(2): 233-240.[19] ABOUL-GHEIT A K. Effect of decationation and dealumination of zeolite Y on its acidity as assessed by ammonia desorption measured by differential scanning calorimetry (DSC)[J]. Thermochim Acta, 1991, 191(2): 233-240.
-
[20] FREEL J. Chemisorption on supported platinum: Ⅰ. Evaluation of a pulse method[J]. J Catal, 1972, 25(1):139-148.[20] FREEL J. Chemisorption on supported platinum: Ⅰ. Evaluation of a pulse method[J]. J Catal, 1972, 25(1):139-148.
-
[21] REZAEI M, ALAVI S M, SAHEBDELFAR S, YAN Z F. Tetragonal nanocrystalline zirconia powder with high surface area and mesoporous structure[J]. Poweder Technol, 2006, 168(2): 59-63.[21] REZAEI M, ALAVI S M, SAHEBDELFAR S, YAN Z F. Tetragonal nanocrystalline zirconia powder with high surface area and mesoporous structure[J]. Poweder Technol, 2006, 168(2): 59-63.
-
[22] KHOSHBIN R, HAGHIGHI M. Direct syngas to DME as a clean fuel: The beneficial use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst[J]. Chem Eng Res Des, 2013, 91(6): 1111-1122.[22] KHOSHBIN R, HAGHIGHI M. Direct syngas to DME as a clean fuel: The beneficial use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst[J]. Chem Eng Res Des, 2013, 91(6): 1111-1122.
-
[23] XIA S, NIE R, LU X, WANG L, CHEN P, HOU Z. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMg<em>xAl2O8.6 catalysts: The role of basicity and hydrogenation spillover[J]. J Catal, 2012, 296: 1-11.[23] XIA S, NIE R, LU X, WANG L, CHEN P, HOU Z. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMg<em>xAl2O8.6 catalysts: The role of basicity and hydrogenation spillover[J]. J Catal, 2012, 296: 1-11.
-
[24] NIE R, LEI H, PAN S, WANG L, FEI J, HOU Z. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425.[24] NIE R, LEI H, PAN S, WANG L, FEI J, HOU Z. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425.
-
[25] FEI J, YANG M, HOU Z, ZHENG X. Effect of the addition of manganese and zinc on the properties of copper-based catalyst for the synthesis of syngas to dimethyl ether[J]. Energy Fuels, 2004, 18(5): 1584-1587.[25] FEI J, YANG M, HOU Z, ZHENG X. Effect of the addition of manganese and zinc on the properties of copper-based catalyst for the synthesis of syngas to dimethyl ether[J]. Energy Fuels, 2004, 18(5): 1584-1587.
-
[26] YANG M, MEN Y, LI S, CHEN G. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bi-functional catalyst[J]. Int J Hydrog Energy, 2012, 37(10): 8360-8369.[26] YANG M, MEN Y, LI S, CHEN G. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bi-functional catalyst[J]. Int J Hydrog Energy, 2012, 37(10): 8360-8369.
-
[27] NASIKIN M, WAHID A. Effect of ultrasonic during preparation on Cu-based catalyst performance for hydrogenation of CO, to methanol[J]. AJChE, 2005, 5(2): 111-115.[27] NASIKIN M, WAHID A. Effect of ultrasonic during preparation on Cu-based catalyst performance for hydrogenation of CO, to methanol[J]. AJChE, 2005, 5(2): 111-115.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 0
- HTML全文浏览量: 0

下载: