Citation: WANG Qing, REN Li-guo, WANG Rui, BAI Jing-ru, WANG Hao-tian, YAN Yu-he. Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 303-308.
油页岩的13C-NMR特征及FLASHCHAIN热解模拟研究
English
Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN
-
Key words:
- 13C-NMR
- / TG-FTIR
- / oil shales
- / pyrolysis
- / structural parameters
- / FLASHCHAIN
-
-
-
[1] 侯祥麟. 中国页岩油工业[M]. 北京: 石油工业出版社, 1984: 5-10. (HOU Xiang-lin. China shale oil industry[M]. Beijing: Petroleum Industry Press, 1984: 5-10.)[1] 侯祥麟. 中国页岩油工业[M]. 北京: 石油工业出版社, 1984: 5-10. (HOU Xiang-lin. China shale oil industry[M]. Beijing: Petroleum Industry Press, 1984: 5-10.)
-
[2] QIAN J R. Geology and resources of some world oil shale deposits[J]. Oil Shale, 2003, 20(3): 193-252.[2] QIAN J R. Geology and resources of some world oil shale deposits[J]. Oil Shale, 2003, 20(3): 193-252.
-
[3] 钱家麟, 尹亮. 油页岩-石油的补充能源[M]. 北京: 中国石化出版社, 2008: 1-3. (QIAN Jia-lin, YIN Liang. Oil shale-The complementary energy of petroleum[M]. Beijing: China Petrochemical Press, 2008: 1-3.)[3] 钱家麟, 尹亮. 油页岩-石油的补充能源[M]. 北京: 中国石化出版社, 2008: 1-3. (QIAN Jia-lin, YIN Liang. Oil shale-The complementary energy of petroleum[M]. Beijing: China Petrochemical Press, 2008: 1-3.)
-
[4] MAO K, KENNEDY G J, ALTHAUS S M, PRUSKI M. Determination of the average aromatic cluster size of fossil fuels by solid-state NMR at high magnetic field[J]. Energy Fuels, 2013, 27(2): 760-763.[4] MAO K, KENNEDY G J, ALTHAUS S M, PRUSKI M. Determination of the average aromatic cluster size of fossil fuels by solid-state NMR at high magnetic field[J]. Energy Fuels, 2013, 27(2): 760-763.
-
[5] TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (solid-state 13C-NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9): 4006-4013.[5] TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (solid-state 13C-NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9): 4006-4013.
-
[6] MIKNIS F P, LINDNER A W, GANNON A J, DAVIS M F, MACIEL G E. Solid state 13C-NMR studies of selected oil shales from Queensland, Australia[J]. Org Geochem, 1984, 7(3/4): 239-248.[6] MIKNIS F P, LINDNER A W, GANNON A J, DAVIS M F, MACIEL G E. Solid state 13C-NMR studies of selected oil shales from Queensland, Australia[J]. Org Geochem, 1984, 7(3/4): 239-248.
-
[7] 秦匡宗, 劳永新. 茂名和抚顺油页岩组成结构的研究I. 有机质的芳碳结构[J]. 燃料化学学报, 1985, 13(2): 133-140. (QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I: The structural components of the organic matter[J]. Journal of Fuel Chemistry and Technology, 1985, 13(2): 133-140.)[7] 秦匡宗, 劳永新. 茂名和抚顺油页岩组成结构的研究I. 有机质的芳碳结构[J]. 燃料化学学报, 1985, 13(2): 133-140. (QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I: The structural components of the organic matter[J]. Journal of Fuel Chemistry and Technology, 1985, 13(2): 133-140.)
-
[8] NIKSA S, KERSTEIN A R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation[J]. Energy Fuels, 1991, 5(5): 647-665.[8] NIKSA S, KERSTEIN A R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation[J]. Energy Fuels, 1991, 5(5): 647-665.
-
[9] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 2. Impact of operating conditions[J]. Energy Fuels, 1991, 5(5): 665-673.[9] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 2. Impact of operating conditions[J]. Energy Fuels, 1991, 5(5): 665-673.
-
[10] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 3. Modeling the behavior of various coals[J]. Energy Fuels, 1991, 5(5): 673-683.[10] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 3. Modeling the behavior of various coals[J]. Energy Fuels, 1991, 5(5): 673-683.
-
[11] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics. 4. Predicting ultimate yields from ultimate analyses alone[J]. Energy Fuels, 1994, 8(3): 659-670.[11] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics. 4. Predicting ultimate yields from ultimate analyses alone[J]. Energy Fuels, 1994, 8(3): 659-670.
-
[12] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 5. Interpreting rates of devolatilization for various coal types and operating conditions[J]. Energy Fuels, 1994, 8(3): 671-679.[12] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 5. Interpreting rates of devolatilization for various coal types and operating conditions[J]. Energy Fuels, 1994, 8(3): 671-679.
-
[13] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 6. Predicting the evolution of fuel nitrogen from various coals[J]. Energy Fuels, 1995, 9(3): 467-478.[13] NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 6. Predicting the evolution of fuel nitrogen from various coals[J]. Energy Fuels, 1995, 9(3): 467-478.
-
[14] NIKSA S. FLASHCHAIN theory for rapid coal de volatilization kinetics 7. Predicting the release of oxygen species from various coals[J]. Energy Fuels, 1996, 10(1): 173-187.[14] NIKSA S. FLASHCHAIN theory for rapid coal de volatilization kinetics 7. Predicting the release of oxygen species from various coals[J]. Energy Fuels, 1996, 10(1): 173-187.
-
[15] NIKSA S, KERSTEIN A R. The distributed-energy chain model for rapid coal devolatilization kinetics. Part I: Formulation[J]. Combust Flame, 1986, 66(2): 95-109.[15] NIKSA S, KERSTEIN A R. The distributed-energy chain model for rapid coal devolatilization kinetics. Part I: Formulation[J]. Combust Flame, 1986, 66(2): 95-109.
-
[16] NIKSA S. The distributed-energy chain model for rapid coal devolatilization kinetics part Ⅱ: Transient weight loss correlations[J]. Combust Flame, 1986, 66(2): 111-119.[16] NIKSA S. The distributed-energy chain model for rapid coal devolatilization kinetics part Ⅱ: Transient weight loss correlations[J]. Combust Flame, 1986, 66(2): 111-119.
-
[17] NIKSA S, KERSTEIN A R. On the role of macromolecular configuration in rapid coal devolatilization[J]. Fuels, 1987, 66(10): 1389-1399.[17] NIKSA S, KERSTEIN A R. On the role of macromolecular configuration in rapid coal devolatilization[J]. Fuels, 1987, 66(10): 1389-1399.
-
[18] NIKSA S. Modeling the devolatilization behavior of high volatile bituminous coals[J]. Symposium (International) on Combustion, 1989, 22(1): 105-114.[18] NIKSA S. Modeling the devolatilization behavior of high volatile bituminous coals[J]. Symposium (International) on Combustion, 1989, 22(1): 105-114.
-
[19] NIKSA S. Rapid coal devolatilization as an model for equilibrium flash distillation[J]. AIChE J, 1988, 34(5): 790-802.[19] NIKSA S. Rapid coal devolatilization as an model for equilibrium flash distillation[J]. AIChE J, 1988, 34(5): 790-802.
-
[20] 秦匡宗, 吴肖令. 抚顺油页岩热解成烃机理-固体13C核磁波谱技术的应用[J]. 石油学报, 1990, 69(1): 37-44. (QIN Kuang-zong, WU Xiao-ling. Fushun oil shale pyrolysis mechanism of hydrocarbon-The application of solid state 13C NMR[J]. Journal of Petroleum, 1990, 69(1): 37-44.)[20] 秦匡宗, 吴肖令. 抚顺油页岩热解成烃机理-固体13C核磁波谱技术的应用[J]. 石油学报, 1990, 69(1): 37-44. (QIN Kuang-zong, WU Xiao-ling. Fushun oil shale pyrolysis mechanism of hydrocarbon-The application of solid state 13C NMR[J]. Journal of Petroleum, 1990, 69(1): 37-44.)
-
[21] AXELSON D E. Spinning sideband suppression and quantitative analysis in solid state 13C NMR of fossil fuels[J]. Fuel, 1987, 66(2): 195-199.[21] AXELSON D E. Spinning sideband suppression and quantitative analysis in solid state 13C NMR of fossil fuels[J]. Fuel, 1987, 66(2): 195-199.
-
[22] 钱琳, 孙绍增, 王东, 郭浩然, 许焕焕, 孟建强, 秦裕琨. 两种褐煤的13C-NMR特征及CPD高温快速热解模拟研究[J]. 煤炭学报, 2013, 38(3): 455-460. (QIAN Lin, SUN Shao-zeng, WANG-Dong, GUO Hao-ran, XU Huan-huan, MENG Jian-qiang, QIN Yu-kun. The 13C-NMR measurements of two types of lignite and the CPD simulation of lignite rapid pyrolysis at high temperature[J]. Journal of China coal society, 2013, 38(3): 455-460.)[22] 钱琳, 孙绍增, 王东, 郭浩然, 许焕焕, 孟建强, 秦裕琨. 两种褐煤的13C-NMR特征及CPD高温快速热解模拟研究[J]. 煤炭学报, 2013, 38(3): 455-460. (QIAN Lin, SUN Shao-zeng, WANG-Dong, GUO Hao-ran, XU Huan-huan, MENG Jian-qiang, QIN Yu-kun. The 13C-NMR measurements of two types of lignite and the CPD simulation of lignite rapid pyrolysis at high temperature[J]. Journal of China coal society, 2013, 38(3): 455-460.)
-
[23] SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of argonne premium coals[J]. Energy Fuels, 1989, 3(2): 187-193.[23] SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of argonne premium coals[J]. Energy Fuels, 1989, 3(2): 187-193.
-
[24] XU W C, TOMITA A. Effect of coal type on the flash pyrolysis of various coals[J]. Fuels, 1987, 66(5): 627-631.[24] XU W C, TOMITA A. Effect of coal type on the flash pyrolysis of various coals[J]. Fuels, 1987, 66(5): 627-631.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 0
- HTML全文浏览量: 0

下载: