Citation: WANG Chao, ZHOU Wei, YIN Ren-he. Electro hydrogenation of coal in a Pb/DMF-EtOH system:Structure change of coal observed by organic solvent extraction[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 262-269.
Pb/DMF-EtOH体系中煤炭的电化学加氢:利用溶液萃取法研究煤炭在电解过程中的结构变化
English
Electro hydrogenation of coal in a Pb/DMF-EtOH system:Structure change of coal observed by organic solvent extraction
-
Key words:
- coal
- / electro-reduction
- / hydrogenation
- / Pb electrode
- / organic electrolyte
-
-
-
[1] SCHMIERS H, KÖPSEL R. Macromolecular structure of brown coal in relationship to the degradability by microorganisms[J]. Fuel Process Technol, 1997, 52(1/3): 109-114.[1] SCHMIERS H, KÖPSEL R. Macromolecular structure of brown coal in relationship to the degradability by microorganisms[J]. Fuel Process Technol, 1997, 52(1/3): 109-114.
-
[2] ZOLLER D L, JOHNSTON M V, TOMIC J, WANG X, CALKINS W H. Thermogravimetry-photoionization mass spectrometry of different rank coals[J]. Energy Fuels, 1999, 13(5): 1097-1104.[2] ZOLLER D L, JOHNSTON M V, TOMIC J, WANG X, CALKINS W H. Thermogravimetry-photoionization mass spectrometry of different rank coals[J]. Energy Fuels, 1999, 13(5): 1097-1104.
-
[3] PIETRZAK R, WACHOWSKA H. Low temperature oxidation of coals of different rank and different sulphur content[J]. Fuel, 2003, 82(6): 705-713.[3] PIETRZAK R, WACHOWSKA H. Low temperature oxidation of coals of different rank and different sulphur content[J]. Fuel, 2003, 82(6): 705-713.
-
[4] LI J, YANG J, LIU Z. Hydrogenation of heavy liquids from a direct coal liquefaction residue for improved oil yield[J]. Fuel Process Technol, 2009, 90(4): 490-495.[4] LI J, YANG J, LIU Z. Hydrogenation of heavy liquids from a direct coal liquefaction residue for improved oil yield[J]. Fuel Process Technol, 2009, 90(4): 490-495.
-
[5] VASIREDDY S, MORREALE B, CUGINI A, SONG C, SPIVEY J J. Clean liquid fuels from direct coal liquefaction: Chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci, 2011, 4(2): 311-345.[5] VASIREDDY S, MORREALE B, CUGINI A, SONG C, SPIVEY J J. Clean liquid fuels from direct coal liquefaction: Chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci, 2011, 4(2): 311-345.
-
[6] BENJAMIN B M, RAAEN V F, MAUPIN P H, BROWN L L, COLLINS C J. Thermal cleavage of chemical bonds in selected coal-related structures[J]. Fuel, 1978, 57(5): 269-272.[6] BENJAMIN B M, RAAEN V F, MAUPIN P H, BROWN L L, COLLINS C J. Thermal cleavage of chemical bonds in selected coal-related structures[J]. Fuel, 1978, 57(5): 269-272.
-
[7] SHUI H, LIU J, WANG Z, CAO M, WEI X. Effect of pre-swelling of coal at mild temperatures on its hydro-liquefaction properties[J]. Fuel Process Technol, 2009, 90(7/8): 1047-1051.[7] SHUI H, LIU J, WANG Z, CAO M, WEI X. Effect of pre-swelling of coal at mild temperatures on its hydro-liquefaction properties[J]. Fuel Process Technol, 2009, 90(7/8): 1047-1051.
-
[8] WANG Z, SHUI H, ZHU Y, GAO J. Catalysis of solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5): 885-889.[8] WANG Z, SHUI H, ZHU Y, GAO J. Catalysis of solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5): 885-889.
-
[9] LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci, 2010, 65(1): 12-17.[9] LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci, 2010, 65(1): 12-17.
-
[10] SUGANO M, OHURA S, ENDOH R, HIRANO K, MASHIMO K. Effects of hydrogen transfer by exchanged cobalt upon liquefaction of low rank coal[J]. Fuel, 2012, 101: 228-233.[10] SUGANO M, OHURA S, ENDOH R, HIRANO K, MASHIMO K. Effects of hydrogen transfer by exchanged cobalt upon liquefaction of low rank coal[J]. Fuel, 2012, 101: 228-233.
-
[11] SHUI H, CHEN Z, WANG Z, ZHANG D. Kinetics of Shenhua coal liquefaction catalyzed by SO4/ZrO2 solid acid[J]. Fuel, 2010, 89(1): 67-72.[11] SHUI H, CHEN Z, WANG Z, ZHANG D. Kinetics of Shenhua coal liquefaction catalyzed by SO4/ZrO2 solid acid[J]. Fuel, 2010, 89(1): 67-72.
-
[12] MIYAKE M, HAMAGUCHI M, NOMURA M. Electrochemical hydrogenation of coal with active hydrogen generated from water in a mediator/nickel powder system under ultrasonic irradiation[J]. Energy Fuels, 1989, 3(3): 362-365.[12] MIYAKE M, HAMAGUCHI M, NOMURA M. Electrochemical hydrogenation of coal with active hydrogen generated from water in a mediator/nickel powder system under ultrasonic irradiation[J]. Energy Fuels, 1989, 3(3): 362-365.
-
[13] REGGEL L, RAYMOND R, STEINER W, FRIEDEL R, WENDER I. Reduction of coal by lithium-ethylenediamine: Studies on a series of vitrains[J]. Fuel, 1961, 40: 339-356.[13] REGGEL L, RAYMOND R, STEINER W, FRIEDEL R, WENDER I. Reduction of coal by lithium-ethylenediamine: Studies on a series of vitrains[J]. Fuel, 1961, 40: 339-356.
-
[14] GIVEN P. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39: 147-153.[14] GIVEN P. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39: 147-153.
-
[15] WANG Z, LIU X, ZHAO D. Electroreduction of pretreated low temperature coal tar fraction in dimethylformamide-EtOH-H2O-tetra n-butylammonium bromide system[J]. Fuel Process Technol, 1997, 50(2/3): 131-137.[15] WANG Z, LIU X, ZHAO D. Electroreduction of pretreated low temperature coal tar fraction in dimethylformamide-EtOH-H2O-tetra n-butylammonium bromide system[J]. Fuel Process Technol, 1997, 50(2/3): 131-137.
-
[16] JIANG H, LIU H, ZHOU W, YIN R. Study on the catalytic activity of NiB electrodes and FeS catalyst for electrochemical liquefaction of coal[J]. J Fudan Univ (Nat Sci), 2012, 15(2): 245-250.[16] JIANG H, LIU H, ZHOU W, YIN R. Study on the catalytic activity of NiB electrodes and FeS catalyst for electrochemical liquefaction of coal[J]. J Fudan Univ (Nat Sci), 2012, 15(2): 245-250.
-
[17] BALDWIN R, JONES K, JOSEPH J, WONG J. Voltammetry and electrolysis of coal slurries and H-coal liquids[J]. Fuel, 1981, 60(8): 739-743.[17] BALDWIN R, JONES K, JOSEPH J, WONG J. Voltammetry and electrolysis of coal slurries and H-coal liquids[J]. Fuel, 1981, 60(8): 739-743.
-
[18] LIU H, LIANG H, YANG J, YANG C, ZHOU W. The cathodic reduction process of the anodic Pb (II) oxides film formed on lead[J]. J Chinese Chem Soc, 2002, 60(3): 427-431.[18] LIU H, LIANG H, YANG J, YANG C, ZHOU W. The cathodic reduction process of the anodic Pb (II) oxides film formed on lead[J]. J Chinese Chem Soc, 2002, 60(3): 427-431.
-
[19] TIAN D, SHARMA R K, STILLER A H, STINESPRING C D, DADYBURJOR D B. Direct liquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo[J]. Fuel, 1996, 75(6): 751-758.[19] TIAN D, SHARMA R K, STILLER A H, STINESPRING C D, DADYBURJOR D B. Direct liquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo[J]. Fuel, 1996, 75(6): 751-758.
-
[20] MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95: 19-24.[20] MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95: 19-24.
-
[21] MATHEWS J P, VAN DUIN A C T, CHAFFEE A L. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4): 718-728.[21] MATHEWS J P, VAN DUIN A C T, CHAFFEE A L. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4): 718-728.
-
[22] DOMAZETIS G, JAMES B D. Molecular models of brown coal containing inorganic species[J]. Org Geochem, 2006, 37(2): 244-259.[22] DOMAZETIS G, JAMES B D. Molecular models of brown coal containing inorganic species[J]. Org Geochem, 2006, 37(2): 244-259.
-
[23] TROMP P, MOULIJN J. Slow and rapid pyrolysis of coal[J]. NATO ASI series, Series C Math & Phys Sci, 1988, 244(37): 305-338.[23] TROMP P, MOULIJN J. Slow and rapid pyrolysis of coal[J]. NATO ASI series, Series C Math & Phys Sci, 1988, 244(37): 305-338.
-
[24] HATCHER P G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. Org Geochem, 1990, 16(4/6): 959-968.[24] HATCHER P G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. Org Geochem, 1990, 16(4/6): 959-968.
-
[25] CARLSON G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy Fuels, 1992, 6(6): 771-778.[25] CARLSON G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy Fuels, 1992, 6(6): 771-778.
-
[26] GENIES C, MERCIER R, SILLION B, PETIAUD R, CORNET N, GEBEL G, PINERI M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J]. Polymer, 2001, 42(12): 5097-5105.[26] GENIES C, MERCIER R, SILLION B, PETIAUD R, CORNET N, GEBEL G, PINERI M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J]. Polymer, 2001, 42(12): 5097-5105.
-
[27] CHEN C Y. Stability constants of polymer bound iminodiacetate type chelating agents with some transition metal ions[J]. J Appl Polym Sci, 2002, 86(8): 1986-1994.[27] CHEN C Y. Stability constants of polymer bound iminodiacetate type chelating agents with some transition metal ions[J]. J Appl Polym Sci, 2002, 86(8): 1986-1994.
-
[28] KIM S H, LEE S M, PARK J H, KIM J H, KOH K N, KANG S W. The preparation and spectroscopic study of self-assembled monolayers of a UV-sensitive spiroxazine dye on gold[J]. Dyes Pigm, 2000, 45(1): 51-57.[28] KIM S H, LEE S M, PARK J H, KIM J H, KOH K N, KANG S W. The preparation and spectroscopic study of self-assembled monolayers of a UV-sensitive spiroxazine dye on gold[J]. Dyes Pigm, 2000, 45(1): 51-57.
-
[29] JI D, LU X, HE R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst[J]. Appl Catal A: Gen, 2000, 203(2): 329-333.[29] JI D, LU X, HE R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst[J]. Appl Catal A: Gen, 2000, 203(2): 329-333.
-
[30] ROMERO C, BALDELLI S. Sum frequency generation study of the room-temperature ionic liquids/quartz interface[J]. J Phys Chem B, 2006, 110(12): 6213-6223.[30] ROMERO C, BALDELLI S. Sum frequency generation study of the room-temperature ionic liquids/quartz interface[J]. J Phys Chem B, 2006, 110(12): 6213-6223.
-
[31] TONGE P, FAUSTO R, CAREY P. FTIR studies of hydrogen bonding between [alpha],[beta]-unsaturated esters and alcohols[J]. J Mol Struct, 1996, 379(1/3): 135-142.[31] TONGE P, FAUSTO R, CAREY P. FTIR studies of hydrogen bonding between [alpha],[beta]-unsaturated esters and alcohols[J]. J Mol Struct, 1996, 379(1/3): 135-142.
-
[32] LI W C, LU A H, GUO S C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde[J]. Carbon, 2001, 39(13): 1989-1994.[32] LI W C, LU A H, GUO S C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde[J]. Carbon, 2001, 39(13): 1989-1994.
-
[33] DONG H, LI H, WANG E, YAN S, ZHANG J, YANG C, TAKAHASHI I, NAKASHIMA H, TORIMITSU K, HU W. Molecular orientation and field-effect transistors of a rigid rod conjugated polymer thin films[J]. J Phys Chem B, 2009, 113(13): 4176-4180.[33] DONG H, LI H, WANG E, YAN S, ZHANG J, YANG C, TAKAHASHI I, NAKASHIMA H, TORIMITSU K, HU W. Molecular orientation and field-effect transistors of a rigid rod conjugated polymer thin films[J]. J Phys Chem B, 2009, 113(13): 4176-4180.
-
[34] MANNA A, IMAE T, IIDA M, HISAMATSU N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex[J]. Langmuir, 2001, 17(19): 6000-6004.[34] MANNA A, IMAE T, IIDA M, HISAMATSU N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex[J]. Langmuir, 2001, 17(19): 6000-6004.
-
[35] SANDFORD S A, ALÉON J, ALEXANDER CMOD, ARAKI T, BAJT S, BARATTA G A, et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft[J]. Science, 2006, 314(5806): 1720-1724.[35] SANDFORD S A, ALÉON J, ALEXANDER CMOD, ARAKI T, BAJT S, BARATTA G A, et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft[J]. Science, 2006, 314(5806): 1720-1724.
-
[36] SAJAN D, BINOY J, PRADEEP B, VENKATA KRISHNA K, KARTHA V B, JOE I H, JAYAKUMAR V S. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate[J]. Spectrochimi Acta Part A: Mol Biomol Spectrosco, 2004, 60(1/2): 173-180.[36] SAJAN D, BINOY J, PRADEEP B, VENKATA KRISHNA K, KARTHA V B, JOE I H, JAYAKUMAR V S. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate[J]. Spectrochimi Acta Part A: Mol Biomol Spectrosco, 2004, 60(1/2): 173-180.
-
[37] MALLICK K, WITCOMB M, DINSMORE A, SCURRELL M. Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route[J]. Langmuir, 2005, 21(17): 7964-7967.[37] MALLICK K, WITCOMB M, DINSMORE A, SCURRELL M. Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route[J]. Langmuir, 2005, 21(17): 7964-7967.
-
[38] KANDA N, ITOH H, YOKOYAMA S, OUCHI K. Mechanism of hydrogenation of coal-derived asphaltene[J]. Fuel, 1978, 57(11): 676-680.[38] KANDA N, ITOH H, YOKOYAMA S, OUCHI K. Mechanism of hydrogenation of coal-derived asphaltene[J]. Fuel, 1978, 57(11): 676-680.
-
[39] DE ABREU Y, PATIL P, MARQUEZ A I, BOTTE G G. Characterization of electrooxidized Pittsburgh No. 8 coal[J]. Fuel, 2007, 86(4): 573-584.[39] DE ABREU Y, PATIL P, MARQUEZ A I, BOTTE G G. Characterization of electrooxidized Pittsburgh No. 8 coal[J]. Fuel, 2007, 86(4): 573-584.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 0
- HTML全文浏览量: 0

下载: