Pb/DMF-EtOH体系中煤炭的电化学加氢:利用溶液萃取法研究煤炭在电解过程中的结构变化

王超 周尉 印仁和

引用本文: 王超, 周尉, 印仁和. Pb/DMF-EtOH体系中煤炭的电化学加氢:利用溶液萃取法研究煤炭在电解过程中的结构变化[J]. 燃料化学学报, 2014, 42(3): 262-269. shu
Citation:  WANG Chao, ZHOU Wei, YIN Ren-he. Electro hydrogenation of coal in a Pb/DMF-EtOH system:Structure change of coal observed by organic solvent extraction[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 262-269. shu

Pb/DMF-EtOH体系中煤炭的电化学加氢:利用溶液萃取法研究煤炭在电解过程中的结构变化

    通讯作者: YIN Ren-he;Tel:+086 02166132931;Fax:+086 02166133517;E-mail:yinrh@staff.shu.edu.cn
  • 基金项目:

    supported by National Science Foundation of China (20873083, 21003088 and 21173144) (20873083, 21003088 and 21173144)

    Funding of Shanghai education commission fifth key disciplines (J50102) (J50102)

    State Key Laboratory of Chemical Engineering (SKL-ChE-08A01) (SKL-ChE-08A01)

    Innovation Foundation of Shanghai University (SHUCX112038). (SHUCX112038)

摘要: 以DMF(氮,氮-二甲基甲酰胺)/乙醇为电解质溶液,研究了煤炭在铅电极表面的电化学加氢作用。利用有机溶剂萃取得到电解产物,并对其进行表征。通过元素分析分析发现,电解产物H/C原子比有了显著提高,体现出该电解体系较高的加氢效率。红外光谱显示,电解过程中C=O 键和芳环结构得到了有效还原。煤分子结构中的桥键,如 C-O-C,也发生了裂解反应。通过 1H-NMR分析,进一步印证了煤电解过程中的结构变化,并提出了可能的反应机理。

English

  • 
    1. [1] SCHMIERS H, KÖPSEL R. Macromolecular structure of brown coal in relationship to the degradability by microorganisms[J]. Fuel Process Technol, 1997, 52(1/3): 109-114.[1] SCHMIERS H, KÖPSEL R. Macromolecular structure of brown coal in relationship to the degradability by microorganisms[J]. Fuel Process Technol, 1997, 52(1/3): 109-114.

    2. [2] ZOLLER D L, JOHNSTON M V, TOMIC J, WANG X, CALKINS W H. Thermogravimetry-photoionization mass spectrometry of different rank coals[J]. Energy Fuels, 1999, 13(5): 1097-1104.[2] ZOLLER D L, JOHNSTON M V, TOMIC J, WANG X, CALKINS W H. Thermogravimetry-photoionization mass spectrometry of different rank coals[J]. Energy Fuels, 1999, 13(5): 1097-1104.

    3. [3] PIETRZAK R, WACHOWSKA H. Low temperature oxidation of coals of different rank and different sulphur content[J]. Fuel, 2003, 82(6): 705-713.[3] PIETRZAK R, WACHOWSKA H. Low temperature oxidation of coals of different rank and different sulphur content[J]. Fuel, 2003, 82(6): 705-713.

    4. [4] LI J, YANG J, LIU Z. Hydrogenation of heavy liquids from a direct coal liquefaction residue for improved oil yield[J]. Fuel Process Technol, 2009, 90(4): 490-495.[4] LI J, YANG J, LIU Z. Hydrogenation of heavy liquids from a direct coal liquefaction residue for improved oil yield[J]. Fuel Process Technol, 2009, 90(4): 490-495.

    5. [5] VASIREDDY S, MORREALE B, CUGINI A, SONG C, SPIVEY J J. Clean liquid fuels from direct coal liquefaction: Chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci, 2011, 4(2): 311-345.[5] VASIREDDY S, MORREALE B, CUGINI A, SONG C, SPIVEY J J. Clean liquid fuels from direct coal liquefaction: Chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci, 2011, 4(2): 311-345.

    6. [6] BENJAMIN B M, RAAEN V F, MAUPIN P H, BROWN L L, COLLINS C J. Thermal cleavage of chemical bonds in selected coal-related structures[J]. Fuel, 1978, 57(5): 269-272.[6] BENJAMIN B M, RAAEN V F, MAUPIN P H, BROWN L L, COLLINS C J. Thermal cleavage of chemical bonds in selected coal-related structures[J]. Fuel, 1978, 57(5): 269-272.

    7. [7] SHUI H, LIU J, WANG Z, CAO M, WEI X. Effect of pre-swelling of coal at mild temperatures on its hydro-liquefaction properties[J]. Fuel Process Technol, 2009, 90(7/8): 1047-1051.[7] SHUI H, LIU J, WANG Z, CAO M, WEI X. Effect of pre-swelling of coal at mild temperatures on its hydro-liquefaction properties[J]. Fuel Process Technol, 2009, 90(7/8): 1047-1051.

    8. [8] WANG Z, SHUI H, ZHU Y, GAO J. Catalysis of solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5): 885-889.[8] WANG Z, SHUI H, ZHU Y, GAO J. Catalysis of solid acid for the liquefaction of coal[J]. Fuel, 2009, 88(5): 885-889.

    9. [9] LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci, 2010, 65(1): 12-17.[9] LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci, 2010, 65(1): 12-17.

    10. [10] SUGANO M, OHURA S, ENDOH R, HIRANO K, MASHIMO K. Effects of hydrogen transfer by exchanged cobalt upon liquefaction of low rank coal[J]. Fuel, 2012, 101: 228-233.[10] SUGANO M, OHURA S, ENDOH R, HIRANO K, MASHIMO K. Effects of hydrogen transfer by exchanged cobalt upon liquefaction of low rank coal[J]. Fuel, 2012, 101: 228-233.

    11. [11] SHUI H, CHEN Z, WANG Z, ZHANG D. Kinetics of Shenhua coal liquefaction catalyzed by SO4/ZrO2 solid acid[J]. Fuel, 2010, 89(1): 67-72.[11] SHUI H, CHEN Z, WANG Z, ZHANG D. Kinetics of Shenhua coal liquefaction catalyzed by SO4/ZrO2 solid acid[J]. Fuel, 2010, 89(1): 67-72.

    12. [12] MIYAKE M, HAMAGUCHI M, NOMURA M. Electrochemical hydrogenation of coal with active hydrogen generated from water in a mediator/nickel powder system under ultrasonic irradiation[J]. Energy Fuels, 1989, 3(3): 362-365.[12] MIYAKE M, HAMAGUCHI M, NOMURA M. Electrochemical hydrogenation of coal with active hydrogen generated from water in a mediator/nickel powder system under ultrasonic irradiation[J]. Energy Fuels, 1989, 3(3): 362-365.

    13. [13] REGGEL L, RAYMOND R, STEINER W, FRIEDEL R, WENDER I. Reduction of coal by lithium-ethylenediamine: Studies on a series of vitrains[J]. Fuel, 1961, 40: 339-356.[13] REGGEL L, RAYMOND R, STEINER W, FRIEDEL R, WENDER I. Reduction of coal by lithium-ethylenediamine: Studies on a series of vitrains[J]. Fuel, 1961, 40: 339-356.

    14. [14] GIVEN P. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39: 147-153.[14] GIVEN P. The distribution of hydrogen in coals and its relation to coal structure[J]. Fuel, 1960, 39: 147-153.

    15. [15] WANG Z, LIU X, ZHAO D. Electroreduction of pretreated low temperature coal tar fraction in dimethylformamide-EtOH-H2O-tetra n-butylammonium bromide system[J]. Fuel Process Technol, 1997, 50(2/3): 131-137.[15] WANG Z, LIU X, ZHAO D. Electroreduction of pretreated low temperature coal tar fraction in dimethylformamide-EtOH-H2O-tetra n-butylammonium bromide system[J]. Fuel Process Technol, 1997, 50(2/3): 131-137.

    16. [16] JIANG H, LIU H, ZHOU W, YIN R. Study on the catalytic activity of NiB electrodes and FeS catalyst for electrochemical liquefaction of coal[J]. J Fudan Univ (Nat Sci), 2012, 15(2): 245-250.[16] JIANG H, LIU H, ZHOU W, YIN R. Study on the catalytic activity of NiB electrodes and FeS catalyst for electrochemical liquefaction of coal[J]. J Fudan Univ (Nat Sci), 2012, 15(2): 245-250.

    17. [17] BALDWIN R, JONES K, JOSEPH J, WONG J. Voltammetry and electrolysis of coal slurries and H-coal liquids[J]. Fuel, 1981, 60(8): 739-743.[17] BALDWIN R, JONES K, JOSEPH J, WONG J. Voltammetry and electrolysis of coal slurries and H-coal liquids[J]. Fuel, 1981, 60(8): 739-743.

    18. [18] LIU H, LIANG H, YANG J, YANG C, ZHOU W. The cathodic reduction process of the anodic Pb (II) oxides film formed on lead[J]. J Chinese Chem Soc, 2002, 60(3): 427-431.[18] LIU H, LIANG H, YANG J, YANG C, ZHOU W. The cathodic reduction process of the anodic Pb (II) oxides film formed on lead[J]. J Chinese Chem Soc, 2002, 60(3): 427-431.

    19. [19] TIAN D, SHARMA R K, STILLER A H, STINESPRING C D, DADYBURJOR D B. Direct liquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo[J]. Fuel, 1996, 75(6): 751-758.[19] TIAN D, SHARMA R K, STILLER A H, STINESPRING C D, DADYBURJOR D B. Direct liquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo[J]. Fuel, 1996, 75(6): 751-758.

    20. [20] MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95: 19-24.[20] MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95: 19-24.

    21. [21] MATHEWS J P, VAN DUIN A C T, CHAFFEE A L. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4): 718-728.[21] MATHEWS J P, VAN DUIN A C T, CHAFFEE A L. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4): 718-728.

    22. [22] DOMAZETIS G, JAMES B D. Molecular models of brown coal containing inorganic species[J]. Org Geochem, 2006, 37(2): 244-259.[22] DOMAZETIS G, JAMES B D. Molecular models of brown coal containing inorganic species[J]. Org Geochem, 2006, 37(2): 244-259.

    23. [23] TROMP P, MOULIJN J. Slow and rapid pyrolysis of coal[J]. NATO ASI series, Series C Math & Phys Sci, 1988, 244(37): 305-338.[23] TROMP P, MOULIJN J. Slow and rapid pyrolysis of coal[J]. NATO ASI series, Series C Math & Phys Sci, 1988, 244(37): 305-338.

    24. [24] HATCHER P G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. Org Geochem, 1990, 16(4/6): 959-968.[24] HATCHER P G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. Org Geochem, 1990, 16(4/6): 959-968.

    25. [25] CARLSON G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy Fuels, 1992, 6(6): 771-778.[25] CARLSON G A. Computer simulation of the molecular structure of bituminous coal[J]. Energy Fuels, 1992, 6(6): 771-778.

    26. [26] GENIES C, MERCIER R, SILLION B, PETIAUD R, CORNET N, GEBEL G, PINERI M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J]. Polymer, 2001, 42(12): 5097-5105.[26] GENIES C, MERCIER R, SILLION B, PETIAUD R, CORNET N, GEBEL G, PINERI M. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium[J]. Polymer, 2001, 42(12): 5097-5105.

    27. [27] CHEN C Y. Stability constants of polymer bound iminodiacetate type chelating agents with some transition metal ions[J]. J Appl Polym Sci, 2002, 86(8): 1986-1994.[27] CHEN C Y. Stability constants of polymer bound iminodiacetate type chelating agents with some transition metal ions[J]. J Appl Polym Sci, 2002, 86(8): 1986-1994.

    28. [28] KIM S H, LEE S M, PARK J H, KIM J H, KOH K N, KANG S W. The preparation and spectroscopic study of self-assembled monolayers of a UV-sensitive spiroxazine dye on gold[J]. Dyes Pigm, 2000, 45(1): 51-57.[28] KIM S H, LEE S M, PARK J H, KIM J H, KOH K N, KANG S W. The preparation and spectroscopic study of self-assembled monolayers of a UV-sensitive spiroxazine dye on gold[J]. Dyes Pigm, 2000, 45(1): 51-57.

    29. [29] JI D, LU X, HE R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst[J]. Appl Catal A: Gen, 2000, 203(2): 329-333.[29] JI D, LU X, HE R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst[J]. Appl Catal A: Gen, 2000, 203(2): 329-333.

    30. [30] ROMERO C, BALDELLI S. Sum frequency generation study of the room-temperature ionic liquids/quartz interface[J]. J Phys Chem B, 2006, 110(12): 6213-6223.[30] ROMERO C, BALDELLI S. Sum frequency generation study of the room-temperature ionic liquids/quartz interface[J]. J Phys Chem B, 2006, 110(12): 6213-6223.

    31. [31] TONGE P, FAUSTO R, CAREY P. FTIR studies of hydrogen bonding between [alpha],[beta]-unsaturated esters and alcohols[J]. J Mol Struct, 1996, 379(1/3): 135-142.[31] TONGE P, FAUSTO R, CAREY P. FTIR studies of hydrogen bonding between [alpha],[beta]-unsaturated esters and alcohols[J]. J Mol Struct, 1996, 379(1/3): 135-142.

    32. [32] LI W C, LU A H, GUO S C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde[J]. Carbon, 2001, 39(13): 1989-1994.[32] LI W C, LU A H, GUO S C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde[J]. Carbon, 2001, 39(13): 1989-1994.

    33. [33] DONG H, LI H, WANG E, YAN S, ZHANG J, YANG C, TAKAHASHI I, NAKASHIMA H, TORIMITSU K, HU W. Molecular orientation and field-effect transistors of a rigid rod conjugated polymer thin films[J]. J Phys Chem B, 2009, 113(13): 4176-4180.[33] DONG H, LI H, WANG E, YAN S, ZHANG J, YANG C, TAKAHASHI I, NAKASHIMA H, TORIMITSU K, HU W. Molecular orientation and field-effect transistors of a rigid rod conjugated polymer thin films[J]. J Phys Chem B, 2009, 113(13): 4176-4180.

    34. [34] MANNA A, IMAE T, IIDA M, HISAMATSU N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex[J]. Langmuir, 2001, 17(19): 6000-6004.[34] MANNA A, IMAE T, IIDA M, HISAMATSU N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex[J]. Langmuir, 2001, 17(19): 6000-6004.

    35. [35] SANDFORD S A, ALÉON J, ALEXANDER CMOD, ARAKI T, BAJT S, BARATTA G A, et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft[J]. Science, 2006, 314(5806): 1720-1724.[35] SANDFORD S A, ALÉON J, ALEXANDER CMOD, ARAKI T, BAJT S, BARATTA G A, et al. Organics captured from comet 81P/Wild 2 by the Stardust spacecraft[J]. Science, 2006, 314(5806): 1720-1724.

    36. [36] SAJAN D, BINOY J, PRADEEP B, VENKATA KRISHNA K, KARTHA V B, JOE I H, JAYAKUMAR V S. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate[J]. Spectrochimi Acta Part A: Mol Biomol Spectrosco, 2004, 60(1/2): 173-180.[36] SAJAN D, BINOY J, PRADEEP B, VENKATA KRISHNA K, KARTHA V B, JOE I H, JAYAKUMAR V S. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate[J]. Spectrochimi Acta Part A: Mol Biomol Spectrosco, 2004, 60(1/2): 173-180.

    37. [37] MALLICK K, WITCOMB M, DINSMORE A, SCURRELL M. Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route[J]. Langmuir, 2005, 21(17): 7964-7967.[37] MALLICK K, WITCOMB M, DINSMORE A, SCURRELL M. Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route[J]. Langmuir, 2005, 21(17): 7964-7967.

    38. [38] KANDA N, ITOH H, YOKOYAMA S, OUCHI K. Mechanism of hydrogenation of coal-derived asphaltene[J]. Fuel, 1978, 57(11): 676-680.[38] KANDA N, ITOH H, YOKOYAMA S, OUCHI K. Mechanism of hydrogenation of coal-derived asphaltene[J]. Fuel, 1978, 57(11): 676-680.

    39. [39] DE ABREU Y, PATIL P, MARQUEZ A I, BOTTE G G. Characterization of electrooxidized Pittsburgh No. 8 coal[J]. Fuel, 2007, 86(4): 573-584.[39] DE ABREU Y, PATIL P, MARQUEZ A I, BOTTE G G. Characterization of electrooxidized Pittsburgh No. 8 coal[J]. Fuel, 2007, 86(4): 573-584.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2013-11-11
  • 网络出版日期:  2014-01-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章