Citation: WANG Yong, YU Hai-Peng, HU Yong-Qi, ZHAO Rui-Hong, LI Fei-Long, ZHANG Wen-Jiao, ZHANG Zhao-Xiang. Influence of CuSO4 Doping on the Oxidation Resistance of TiO2-Coated Carbon Fibers[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2549-2554. doi: 10.3969/j.issn.1001-4861.2013.00.403 shu

Influence of CuSO4 Doping on the Oxidation Resistance of TiO2-Coated Carbon Fibers

  • Received Date: 27 May 2013
    Available Online: 31 July 2013

    Fund Project: 河北省自然科学基金(B2013208155) (B2013208155)国家自然科学基金(No.60578041)资助项目。 (No.60578041)

  • Carbon fiber (CF) was coated with TiO2 layer by sol-dipping method using CuSO4 as dopant. The prepared samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electron microscopy (TEM). The SEM/TEM results show that the prepared CuSO4-TiO2 layer is uniformly and compactly. The thickness of the coating layer is increased from 45 nm to 185 nm. XRD results show that prepared layer is composited by anatase TiO2. The oxidation resistant properties of the carbon fibers were studied using isothermal oxidation experimental. Compared with TiO2 coated carbon fiber, the complete decomposition temperature of the CuSO4-TiO2 coated carbon fiber is increased from 667 ℃ to 800 ℃. The oxidation activation energy of TiO2 coating carbon fiber and CuSO4-TiO2 coating carbon fiber are 118.390 kJ· mol-1, 152.562 kJ·mol-1, respectively. The improvement of oxidation resistant of the CuSO4-TiO2 coated carbon fiber is attributed to the CuSO4 liquid sinter effect on the TiO2 layer.
  • 加载中
    1. [1]

      [1] HE Fu (贺福), WANG Mao-Zhang (王茂章). Carbon Fiber and Composite Materials (碳纤维及其复合材料). Beijing: Science Press, 1997.

    2. [2]

      [2] Sheehan J E. Carbon, 1989, 5:709-715

    3. [3]

      [3] LIU Jie (刘杰), GUO Yun-Xia (郭云霞), LIANG Jie-Ying (梁节英), et al. Acta Materi. Compositae Sin. (Fuhe Cailiao Xuebao), 2004, 21 (4):40-44

    4. [4]

      [4] Lu W, Chung D D L. Carbon, 2000, 40:1249-1254

    5. [5]

      [5] Damjianovic T, Chrargirusis B, Jokanovic R H. J.Eur.Ceram. Soc., 2007, 27 (2):1299-1302

    6. [6]

      [6] LI He-Jun (李贺军), XUE Hui (薛晖), FU Qian-Gang (付前刚), et al. Chinese J. Inorg. Mater. (Wuji Cailiao Xuebao), 2010, 25 (4):337-343

    7. [7]

      [7] WANG Yu-Ping (王玉萍), PENG Pan-Ying (彭盘英), DING Hai-Yan (丁海燕), et al. Acta Scientiae Circustantiea (Huanjing Kexue Xuebao), 2005, 25 (5):61l-617

    8. [8]

      [8] Ogihara H, Sadakane M, Nodasaka Y. Chem. Mater., 2006, 18:4981-4983

    9. [9]

      [9] LUO Zhong-Kuan (罗仲宽), SONG Li-Xi (宋力昕), LI Ming (李明), et al. Chinese J. Inorg. Mater. (Wuji Cailiao Xuebao), 2004, 19 (6):1398-1401

    10. [10]

      [10] Battiston G A, Gerbasi R, Gregori A, et al. Thin Solid Films, 2000, 371:126-131

    11. [11]

      [11] JIN Hai-Yan (金海岩), Huang Chang-He (黄长河). Chinese J. Semiconductors. (Ban daoti Xuebao), 1997, 18 (2):97-102

    12. [12]

      [12] Ben Amor S, Guedri L, Baud G, et al. Mater Chem. Phys., 2001, 77:903-911

    13. [13]

      [13] Kuo D H, Tzeng K H. Thin Solid Films, 2002, 420-421: 497-502

    14. [14]

      [14] Dhakate S R, Parashar V K, Raman P V. et al. J. Mater. Sci. Lett., 2000, 19:699-701

    15. [15]

      [15] CHENG Xian-Jun (程显军), XIAO Ying (肖颖). China Patent: 201010554531.7

    16. [16]

      [16] JIA Xin-Bo (贾欣博). China Patent: 201010545782.9

    17. [17]

      [17] YIN Dong-Hong (银董红), DENG Dun-Ying (邓吨英), CHEN En-Wei (陈恩伟), et al. Ind. Catal. (Gongye Cuihua), 2004, 12 (1):1-6

    18. [18]

      [18] FENG Zhi-Yuan (冯志远), LIU Bin (刘斌), RAN Hai-Qiong (冉海琼), et al. Chinese J. Tissue Eng. Res. (Zhongguo Zuzhi Gongcheng Yanjiu), 2012, 16 (8):1439-1442

    19. [19]

      [19] LIU Xue (柳雪), SONG Ying (宋英), NIU Li-Dan (牛丽丹), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010, 26 (1):157-160

    20. [20]

      [20] ZHOU De-Feng (周德凤), ZHU Jian-Xin (朱建新), XIA Yan-Jie (夏燕杰), et al. Chinese J. Inorg.Chem. (Wuji Huaxue Xuebao), 2010, 26 (1):91-95

    21. [21]

      [21] Riyas S, Krishnan G, Das P N M. J. Ceram. Process Res., 2006, 7 (4):301-306

    22. [22]

      [22] German R M, Suri P, Park S J. J Mater. Sci., 2009, 44 (1): 1-39

    23. [23]

      [23] Dai B, Marinkovi S. Carbon, 1987, 25 (3):409-415

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    10. [10]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(0)
  • Abstract views(204)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return