Citation: LI Cao-Long, ZHAO Yu-Ting, CAO Fei, WANG Fei, WANG Yue, YUAN Jian, SHANGGUAN Wen-Feng. Synthesis of Morphology-Controlled CdS Photocatalysts for Hydrogen Evolution under Visible Light[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2535-2542. doi: 10.3969/j.issn.1001-4861.2013.00.402 shu

Synthesis of Morphology-Controlled CdS Photocatalysts for Hydrogen Evolution under Visible Light

  • Received Date: 3 July 2013
    Available Online: 29 July 2013

    Fund Project: 国家重点基础研究发展计划(973计划)(No.2009CN220000)资助项目。 (973计划)(No.2009CN220000)

  • Novel CdS photocatalytic nanomaterials were synthesized by a simple "one-pot" hydrothermal biomolecule-assisted method using glutathione (GSH) as the sulfur source and structure-directing reagent. HRTEM, FESEM, XRD, UV-Vis, PL, BET and photo-stimulated surface reaction technology were used to investigate the surface structure, photo absorption property and photocatalytic performance of CdS. Results show that various morphologies of CdS photocatalysts, such as solid nanospheres (s-CdS), hollow nanospheres (h-CdS) and nanorods (r-CdS), were obtained. The photocatalytic activity of s-CdS was superior to that of h-CdS and r-CdS under visible light. The excellent photocatalytic activity of s-CdS was ascribed to the small sizes of subnanocrystallites, which make it easy for photoinduced electrons and holes on the solid sphere to migrate to the surface and react with water and the sacrificial agent quickly.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972, 238 (5358):37-38

    2. [2]

      [2] Li C L, Yuan J, Shangguan W F, et al. Inte. J. Hydrogen Energy, 2010, 35:7073-7079

    3. [3]

      [3] LI Cao-Long (李曹龙), CHEN Wei (陈威), YUAN Jian (袁坚), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2012, 28 (02):450-456

    4. [4]

      [4] CHEN Wei (陈威), GAO Han-Yang (高寒阳), YANG Yu (杨宇), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2012, 28 (12):2911-2916

    5. [5]

      [5] Zong X, Han J F, Ma G J, et al. J. Phys. Chem. C, 2011, 115:12202-12208

    6. [6]

      [6] LIN Pei-Bin (林培宾), YANG Yu (杨宇), CHEN Wei (陈威), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2013, 29 (6):1313-1318

    7. [7]

      [7] Bao N Z, Shen L M, Domen K, et al. Chem. Lett., 2006, 35: 318-327

    8. [8]

      [8] Bao N Z, Shen L M, Takata T, et al. Chem. Mater., 2008, 20: 110-117

    9. [9]

      [9] Luo M, Liu Y, Hu J C, et al. Appl. Mater. Interfaces, 2012, 4:18131821

    10. [10]

      [10] ZHANG Qin-Feng (张钦峰), HUANG Jian-Feng (黄剑锋), CAO Li-Yun (曹丽云), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2013, 29 (2):271-276

    11. [11]

      [11] Ke D N, Liu S L, Dai K, et al. J. Phys. Chem. C, 2009, 113: 1602116026

    12. [12]

      [12] Girginer B, Galli G, Chiellini E, et al. Inte. J. Hydrogen Energy, 2009, 34:1176-1184

    13. [13]

      [13] Gong Q, Qin X F, Zhou P L, et al. J. Phys. Chem. C, 2007, 111:193540-193551

    14. [14]

      [14] GAO Jian (高洁), LONG Fei (龙飞), CHI Shang-Sen (池上森), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2012, 28 (8):1656-1600

    15. [15]

      [15] Nanda K K, Kruis F E, Fissan H. Nano Lett., 2001, 1:605-616

    16. [16]

      [16] Liu J K, Luo C X, Yang X H, et al. Mater. Lett., 2009, 63: 124-130

    17. [17]

      [17] Dai Z H, Zhang J, Bao J C, et al. J. Mater. Chem., 2007, 17: 1087-1093

    18. [18]

      [18] Li C L, Yuan J, Han B Y, et al. Inte. J. Hydrogen Energy, 2011, 36:4271-4279

    19. [19]

      [19] Cai W, Li Z G, Sui J H, et al. Nanotechnology, 2008, 19: 465606-465616

    20. [20]

      [20] Lee C K, Wang C C, Lyu M D, et al. J. Colloid Interface Sci., 2007, 316:562-569

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(157)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return