Citation: YAN Zhi-Ying, LI Jun-Jie, DUAN De-Liang, WANG Wei, WANG Jia-Qiang. Ionic Liquid-Assisted Hydrothermal Synthesis of Hexagonal WO3 Nanorod Bundles[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2637-2642. doi: 10.3969/j.issn.1001-4861.2013.00.397 shu

Ionic Liquid-Assisted Hydrothermal Synthesis of Hexagonal WO3 Nanorod Bundles

  • Received Date: 14 June 2013
    Available Online: 1 September 2013

    Fund Project: 国家自然科学基金(No.21063016,No.U1033603)资助项目。 (No.21063016,No.U1033603)

  • Hexagonal tungsten oxide (h-WO3) was synthesized by an ionic liquid (1-methyl-3-ethyl imidazole bromide (Emim+Br-)) -assisted hydrothermal method at 180 ℃ for 21 h. The as-synthesized products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS). The results show that the morphologies of WO3 are controlled by the amount of Emim+Br-. In 0.5 g Emim+Br--added solution, the product is h-WO3 nanorod bundles composed of uniform WO3 nanorods with average diameter of 25 nm and length of 200~300 nm. The formation mechanism of h-WO3 nanorod bundles is proposed according to the experimental results.
  • 加载中
    1. [1]

      [1] Xia Y, Yang P, Sun Y, et al. Adv. Mater., 2003, 15 (5): 353-389

    2. [2]

      [2] Chen D, Ye J H. Adv. Funct. Mater., 2008, 18:1922-1927

    3. [3]

      [3] Hibino M, Han W, Kudo T. Solid State Ionics, 2000, 135 (1/3/ 4):61-69

    4. [4]

      [4] Wang S J, Lu W J, Cheng G, et al. Appl. Phys. Lett., 2009, 94 (26):263106-263109

    5. [5]

      [5] Wu Y, Xi Z H, Zhang G M, et al. J. Cryst. Growth, 2006, 292:143-148

    6. [6]

      [6] Gu Z J, Ma Y, Yang W S, et al. Chem. Commun., 2005, 5 (28):3597-3599

    7. [7]

      [7] CHENG Li-Fang (程利芳), ZHANG Xin-Tang (张兴堂), CHEN Yan-Hui (陈艳辉), et al. Chinese. J. Inorg. Chem. (Wuji Huaxue Xuebao), 2004, 20 (9):1117-1122

    8. [8]

      [8] Gu Z J, Li H Q, Zhai T Y, et al. J. Solid State Chem., 2007, 180:98-105

    9. [9]

      [9] Gu Z J, Zhai T Y, Gao B F, et al. J. Phys. Chem. B, 2006, 110:23829-23836

    10. [10]

      [10] Phuruangrat A, Ham D J, Hong S J, et al. J. Mater. Chem., 2010, 20:1683-1690

    11. [11]

      [11] Ha J H, Muralidharan P, Kim D K. J. Alloys Compd., 2009, 475:446-451

    12. [12]

      [12] Zhang J, Tu J P, Xia X H, et al. J. Mater. Chem., 2011, 21: 5492-5498

    13. [13]

      [13] Peng T Y, Ke D N, Xiao J R, et al. J. Solid State Chem., 2012, 194:250-256

    14. [14]

      [14] Lou X W, Zeng H C. Inorg. Chem., 2003, 42 (20):6169-6171

    15. [15]

      [15] Wang J M, Khoo E, Lee P S, et al. J. Phys. Chem. C, 2008, 112:14306-14312

    16. [16]

      [16] Salmaoui S, Sediri F, Gharbi N. Polyhedron, 2010, 29:1771-1775

    17. [17]

      [17] Tong P V, Hoa N D, Quang V V. Sens. Actuators B, 2013, 183:372-380

    18. [18]

      [18] Biswas K, Rao C N R. Chem. Eur. J., 2007, 13 (21):6123-6129

    19. [19]

      [19] Yang L X, Zhu Y J, Wang W W, et al. J. Phys. Chem. B, 2006, 110 (13):6609-6614

    20. [20]

      [20] Shang Y, Hong J, Liu L. et al. J. Solid State Chem., 2010, 183 (3):696-701

    21. [21]

      [21] Liu X, Ma J, Zheng W. Rev. Adv. Mater. Sci., 2011, 27:43-51

    22. [22]

      [22] Lian J B, Kim T I, Liu X D, et al. J. Phys. Chem. C, 2009, 113 (21):9135-9140

    23. [23]

      [23] Zheng W J, Liu X D, Yan Z Y, et al. ACS Nano, 2009, 3 (1): 115-122

    24. [24]

      [24] Zhang J, Huang F, Zhang L. Nanoscale, 2010, 2:18-34

    25. [25]

      [25] Zitoun D, Pinna N, Frolet N, et al. J. Am. Chem. Soc., 2005, 127:15034-15035

    26. [26]

      [26] Chang H C, Jiang J C, Tsai W C, et al. Chem. Phys. Lett., 2006, 427 (4/5/6):310-316

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return