Citation: WANG Kai, JI Bing-Cheng, HAN Mei-Jia, LI Li-Wei. Preparation of Nitrogen-Doped Graphene with Solid Microwave Method[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2105-2109. doi: 10.3969/j.issn.1001-4861.2013.00.328 shu

Preparation of Nitrogen-Doped Graphene with Solid Microwave Method

  • Received Date: 13 March 2013
    Available Online: 19 May 2013

    Fund Project: 国家863高科技项目(No.2012AA110407) (No.2012AA110407)山东省科技发展计划(No.2011GGB01123)资助项目 (No.2011GGB01123)

  • Graphite oxide was synthesized via Hummers method with flake graphite as raw material. After centrifugation and washing to clean out the remnant slat, ethylenediamine (EDA) was added into the dispersion to react with graphene oxides giving rise to functional graphene sheets (FGS). The dried FGScan interact with microwaves strongly, producing superheating which results in decomposing the grafted EDAmolecules and in-situ doping graphene sheets. The morphology, structure, and components of the as-produced graphene were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), energy dispersion spectrum (EDS). The results showed that nitrogen-doped graphene sheets (NGS) can be successfully synthesized via this strategy. The synthesized nitrogen-doped graphene was transparent.
  • 加载中
    1. [1]

      [1] Guo S J, Dong S J. Chem. Soc. Rev., 2011,40:2644-2672 [2] Meyer J C, Geim A K, Katsnelson M I, et al. Nature, 2007, 446:60-63 [3] Wang K, Zhang L. Int. J. Electrochem. Sci., 2013,8:2892- 2897 [4] Reddy A, Srivastava A, Gowda S R, et al. ACS Nano, 2010, 4:6337-6342 [5] Wang K, Zhang L. Electrochemistry, 2013,81:259-261 [6] Ohta T, Bostwick A, Seyller T, et al. Science, 2006,313:951- 954 [7] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306:666-669 [8] Wang Y, Shao Y Y, Matson D W, et al. ACS Nano, 2010,4: 1790-1798 [9] Xuan W, Lin J Z, Mullen K. Nano Lett., 2008,8:323-327327 [10]Stoller M D, Park S J, Zhu Y W, et al. Nano Lett., 2008,8: 3498-3502 [11]Wang X R, Li X L, Zhang L, et al. Science, 2009,324:768- 771 [12]YANG Yong-Hui(杨勇辉), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010(11):2083-2090 [13]SU Peng(苏鹏), GUO Hui-Lin(郭慧林), PENG San(彭三), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2012 (11):2745-2753 [14]Panchokarla L S, Subrahmanyam K S, Saha S K, et al. Adv. Mater., 2009,21:4726 [15]Liu R L, Wu D Q, Feng X L, et al. Angew. Chem. Int. Ed., 2010,49:2565-2569 [16]Shen W Z, Fan W B. J. Mater. Chem. A, 2013,1:999-1013 [17]Li X L, Wang H L, Robinson J T, et al. J. Am. Chem. Soc., 2009,131:15939-15944 [18]Sheng Z H, Shao L, Chen J J, et al. ACS Nano, 2011,5: 4350-4358 [19]Compton O C, Dikin D A, Putz K W, et al. Adv. Mater., 2010,22:892-896 [20]Che J, Shen L, Xiao Y. J. Mater. Chem., 2010,20:1722- 1727 [21]Hu H, Zhao Z, Zhou Q, et al. Carbon, 2012,50:3267-3273 [22]MA Gui-Xiang(马贵香), ZHAO Jiang-Hong(赵江红), ZHENG Jiang-Feng(郑剑锋), et al. New Carbon Mater.(Xinxing Tan Cailiao), 2012,27(4):258-265 [23]Hu H, Zhao Z, Wan W, et al. Adv. Mater., 2013,25:2219- 2223 [24]Chen W F, Yan L F, Bangal P R. Carbon, 2010,48:1146- 1152 [25]Zhu Y W, Murali S, Stoller M D, et al. Carbon, 2010,48: 2118-2122

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(221)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return