Citation: HUANG Huan, WEI Yu-Long, BAO Chun-Xiong, GAO Hao, YU Tao, ZOU Zhi-Gang. Size-Controlled Nanoporous TiO2 Spheres with High Dye-Loading: Facile Synthesis and Application as Scattering Layers in Dye-Sensitized Solar Cells[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2169-2175. doi: 10.3969/j.issn.1001-4861.2013.00.326 shu

Size-Controlled Nanoporous TiO2 Spheres with High Dye-Loading: Facile Synthesis and Application as Scattering Layers in Dye-Sensitized Solar Cells

  • Received Date: 9 April 2013
    Available Online: 9 June 2013

    Fund Project: 国家自然科学基金(No.11174129) (No.11174129)江苏省自然科学基金(No.BK2011056,BE2012089) (No.BK2011056,BE2012089)中央高校基本科研业务费专项资金(No.1116020406)资助项目 (No.1116020406)

  • Anatase nanoporous TiO2 spheres were synthesized via a modified sol-gel method. By controlling the concentration of the precursor, size-controlled nanoporous TiO2 spheres with high dye-loading were achieved. The synthesized spheres with different sizes (100 nm, 175 nm, 225 nm, 475 nm) were used as scattering layers on a TiO2 nanoparticle film by electrophoresis deposition method to form bi-layered dye-sensitized solar cells (DSSCs). Scattering effect of the layers with different sized spheres was studied. It was proved that the 475nm-sized spheres showed optium light scattering effect. Due to the scattering effect, an overall photoelectric conversion efficiency of 6.3% has been achieved, a 30% increase compared with the nanoparticle-based photoanode.
  • 加载中
    1. [1]

      [1] O'Regan B C, Gr?覿tzel M. Nature, 1991,353:737-740 [2] Gr?覿tzel M. Nature, 2001,414:338-344 [3] Gr?覿tzel M. Inorg. Chem., 2005,44:6841-6851 [4] Wang H E, Zheng L X, Liu C P, et al. J. Phys. Chem. C, 2011,115(21):10419-10425 [5] Cheung K Y, Yip C T, Djurisic A B, et al. Adv. Funct. Mater., 2007,17:555-562 [6] Wang Z S, Kawauchi H, Kashima T, et al. Chem. Rev., 2004, 248:1381-1389 [7] Liu B, Boercker J E, Aydil E S, et al. Nanotechnology, 2008,19:1-7 [8] Tan B, Wu Y. J. Phys. Chem. B, 2006,110:15932-15938 [9] Yong W, Yu T, Liu B Q, et al. Funct. Mater. Lett., 2012,5:1-6 [10]Hore S, Vetter C, Kern R, et al. Sol. Energy Mater. Sol. Cells, 2006,90:1176-1188 [11]Chen D, Huang F, Cheng Y B, et al. Adv. Mater., 2009,21: 2206-2210 [12]Yang W G, Wan F R, Chen Q W, et al. J. Mater. Chem, 2010,20:2870-2876 [13]Huang F, Chen D, Zhang X L, et al. Adv. Funct. Mater., 2010,20:1-5 [14]Wang Z S, Kawauchi H, Kashima T, et al. Chem. Rev. 2004,248:1381-1389 [15]Mou Pal, Garicia J, Santiago P, et al. J. Phys. Chem. C, 2007,111:96-102 [16]Kay A, Gratzel M. Solar Energy Mater. Solar Cell, 1996,44: 99-117 [17]Wang P, Zakeeruddin S M, Moser J E, et al. J. Phys. Chem. B, 2003,107(48):13280-13285 [18]Jung H G, Kang Y S, Sun Y K, et al. Elect Acta, 2010,55: 4637-4641 [19]Jiang X, Herricks T. Adv. Mater., 2003,15(14):1205-1209 [20]Matthews D J, Kay A, Gratzel M. Chem., 1994,47:1869- 1877 [21]Grinis L J, Dor S, Ofir A, et al. Photochem. Photobiol. A, 2008,198(1):52-59 [22]TANG Ze-Kun(唐泽坤), HUANG Huan(黄欢), GUANG Jie (管杰), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28:2401-2406 [23]Xue G G. J. Phys. D: Appl. Phys., 2013,45:425104 [24]Park N G, Van de Lagemaat J, Frank A J. J. Phys. Chem. B, 2000,104:8989-8994 [25]Nagpal V J, Riffe J S, Davis R M. Colloids Surfaces, 1994, 87(1):25-31 [26]Barringer E A, Bowen H K. Langmuir, 1985,1(4):414-420 [27]Parkar J C, Siegel R W. Mater J. Res., 1990,5(6):1246-1252 [28]Park N G, Van de Lagemaat J, Frank A J, et al. J. Phys. Chem. B, 2000,104:8989-8994 [29]Ito S, Murakami T N, Comte P, et al. Thin Solid Films, 2008,516(14):4613-4619 [30]Qian J F, Liu P, Xiao Y, et al. Adv. Mater., 2009,21(36): 3663-3667 [31]Frank A J, Kopidakis N, Coord J, et al. Chem. Rev., 2004, 248(13):1165-1179

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    5. [5]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    6. [6]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    7. [7]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    11. [11]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    12. [12]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

Metrics
  • PDF Downloads(0)
  • Abstract views(252)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return