Citation: Mostafa M H Khalil, Eglal R Souaya, Eman H Ismail, Eman Rabie. Ternary Transition Metal Complexes of Nitrilotriacetic Acid and Valine or Leucine:Synthesis and Biological Applications[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1969-1978. doi: 10.3969/j.issn.1001-4861.2013.00.319 shu

Ternary Transition Metal Complexes of Nitrilotriacetic Acid and Valine or Leucine:Synthesis and Biological Applications

  • Received Date: 16 February 2013
    Available Online: 28 May 2013

  • Ternary complexes of Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) with nitrilotriacetic acid HNTA2- as a primary ligand and valine or leucine as a secondary ligand were synthesized in slightly acidic medium. The new complexes were characterized by elemental analysis, FTIR, UV-Vis spectroscopy, thermal analysis, magnetic measurements and mass spectroscopy. The results indicate that the ternary complexes are isolated in M:HNTA:valine(or leucine) ratio of 1:1:1, and the molecular structures are suggested to be[M(HNTA)(valine)(H2O)2]·1.5H2O and[M(HNTA) (leucine)(H2O)2]·1.5H2O, where M=Ni(Ⅱ) or Cu(Ⅱ) and H2[Zn(NTA)(valine)(H2O)] H2O. The suggested geometry of our ternary metal complexes is an octahedral symmetry. The antimicrobial activities of prepared complexes against Escherichia coli, Staphylococcus aureus, Candida albicans and Aspergillus flavus (isolates from Microanalytical Center, Faculty of Science, Cairo University) were also investigated. The complexes were tested in vitro to assess growth inhibitory activity against the bacterial and fungal species with standard antibacterial and antifungal agents according to the recommended known method.
  • 加载中
    1. [1]

      [1] Charlot M F, Kahn O, Jeannin S, et al. Inorg. Chem., 1980, 19:1411-1416

    2. [2]

      [2] Sigel H, Operschall B P, Massoud S S, et al. Dalton Trans., 2006,46:5521-5529

    3. [3]

      [3] Czakis-Sulikowska D, Czylkowska A, Radwanska D, et al. J. Therm. Anal. Cal., 2007,90:557-564.

    4. [4]

      [4] Bocarsly J R, Barton J K. Inorg. Chem., 1992,31:2827-2832

    5. [5]

      [5] Farver O, Pecht I. Coord. Chem. Rev., 1989,95:17-23

    6. [6]

      [6] Crowe J, Dobeli H, Gentz R, et al. Methods Mol. Bio., 1994, 31:371-387

    7. [7]

      [7] Nieba-Axmann S E, Persson A, Hamalainen M, et al. Anal. Biochem., 1997,252:217-222

    8. [8]

      [8] Maloriery K M, Shnek D R, Sasaki D Y, et al. Chem. Biol., 1996,3:185-192

    9. [9]

      [9] Bumba L, Tichy M, Dobakova M, et al. J. Struct. Bio., 2005, 152:28-35

    10. [10]

      [10] Hu Q H, Li X F, Du G C, et al. J. Chem. Engin., 2008,143: 111-116

    11. [11]

      [11] Ben Hander G M. Res. J. Chem. Sci., 2012,2(3):12-20

    12. [12]

      [12] Anderson R L, Bishop W E, Campbell R L. Crit. Re. Toxicol.,1985,15(1):1-102

    13. [13]

      [13] IARC: Nitrilotriacetic Acid and Its Salts. In: "IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans", IARC, Lyons. 1990,48:181-214

    14. [14]

      [14] Evangelou M W H, Ebel M, Schaeffer A. Chemosphere, 2007,68(6):989-1003

    15. [15]

      [15] Kaur G, Hasan S K, Srivastava R C. Archives of toxicology, 1980,45:203-206

    16. [16]

      [16] Pollack S, Ruocco S. in vivo. Blood., 1981,57(6):1117-1118

    17. [17]

      [17] Mendola M E, Paul T, Strathmann T J, et al. Polyhedron, 2009,28:269-78

    18. [18]

      [18] Kumita H, Jitsukawa K, Masuda H, et al. Inorg. Chim. Acta, 1998,283:160-166

    19. [19]

      [19] Anderegg G, Komplexone X L, Helv. Chim. Acta, 1967,50: 2333-40

    20. [20]

      [20] Hopgood D, Augelici R J. J. Am. Chem. Soc., 1968,90: 2508-13

    21. [21]

      [21] Chohan H Z, Arif M, Akhtar M A, et al. Bioinorg. Chem. Appl., 2006,1:83131 DOI: 10.1155/BCA/2006/83131

    22. [22]

      [22] Sakyan I, Logoglu E, Arslan S, et al. Biometals, 2004,17(2): 115-120

    23. [23]

      [23] Chohan H Z, Arif M, Sarfraz M. Appl. Organomet. Chem., 2007,21(4):294-302

    24. [24]

      [24] Ramakrishna R, Ashis K, Patra P, et al. Polyhedron, 2008, 27:1343-1352

    25. [25]

      [25] Jian fang D, Lianzhi L, Guihua L, et al. J. Mol. Struc., 2011, 986:57-63

    26. [26]

      [26] Jian L, Tingting L, Sulan C, et al. J. Inorg. Biochem., 2006, 100:1888-1896

    27. [27]

      [27] Khalil M, Hamed E, Abdel Azim S et al. J. Therm. Anal. Calorim., 2010,101:129-135

    28. [28]

      [28] Dawson R M C. Data for Biochemical Research, Oxford: Clarendon Press, 1959.

    29. [29]

      [29] Santi E, Torre M H, Kremer E, et al. J. Vib. Spectrosc., 1993,5:285-93

    30. [30]

      [30] Ismail E H, Souaya E R, Amr A M. J. Appl. Poly. Sci., 2012,124(3):1976-1980

    31. [31]

      [31] Souaya E R, Ismail E H, Mohamed A A, et al. J. Therm. Anal. Calorim., 2009,95:553-558

    32. [32]

      [32] Gabbott P. Principles and Applications of Thermal Analysis. 1st ed. UK: Blackwell Publishing Ltd., 2008.

    33. [33]

      [33] Shengli J, Mian J, Sanping C, et al. J. Therm. Anal. Calorim., 2001,66:423-429.

    34. [34]

      [34] Chartone-Souza E, Loyola T L, Rodriguez M B, et al. J. Inorg. Biochem., 2005,99:1001-1008

    35. [35]

      [35] Gordon A S, Howell L D, Harwood V C. J. Microbiol., 1994, 40:408-411

    36. [36]

      [36] Jawetz E, Melnick J L, Adelberg E A. Review of Medical Microbiology, 16th Ed., Los Anglos, CA: Lang Medical Publications1979.

    37. [37]

      [37] Hughes W H, Stewart H C. Concise Antibiotic Treatment Butter Worth, London 1970.

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(0)
  • Abstract views(370)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return