Citation: NIU Wen-Jun, SHEN Ya-Le, XU Jing, MA Liu-Lei, ZHAO Yu-Hua, SHEN Ming. Solvothermal Synthesis of Fe3O4 Nanospheres and Study on the Catalytic Degradation of Xylenol Orange[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2110-2118. doi: 10.3969/j.issn.1001-4861.2013.00.267 shu

Solvothermal Synthesis of Fe3O4 Nanospheres and Study on the Catalytic Degradation of Xylenol Orange

  • Received Date: 16 March 2013
    Available Online: 13 April 2013

    Fund Project: 国家自然科学基金(No.21273194) (No.21273194)江苏科技支撑计划-社会发展基金(No.BE2012705) (No.BE2012705)江苏省大学生实践创新训练计划基金(No.2012JSSPITP1372)资助项目。 (No.2012JSSPITP1372)

  • This paper reports a facile one-pot solvothermal approach for the preparation of 200nm-size Fe3O4 nanospheres with uniform morphology and monodispersity at 160 ℃. During this preparation process, FeCl3·6H2O was used as a single iron source, 1, 2-propylene glycol as solvent and reducing agent, urea as a homogeneous precipitant and maleic acid as an additive. The as-prepared Fe3O4 nanospheres not only had high magnetization saturation value and but also displayed high catalytic activity during the process of xylenol orange (XO) being oxidized degradation by hydrogen peroxide (H2O2). The measurement of UV-Vis spectra indicated that the decolorization rate of xylenol orange was only 6.2% with the oxidation of hydrogen peroxide without Fe3O4 catalyst. However, when Fe3O4 nanospheres were added to the solution, they showed excellent catalytic activity and the decolorization rate of XOcould be increased to 100% within 1h. The experiment also revealed that Fe3O4 nanospheres remained high catalytic activity and stability of material structure after recycling catalyzing of 10 times.
  • 加载中
    1. [1]

      [1] HONG Ruo-Yu(洪若瑜). Magnetic Nanoparticles and Magnetic Fluid(磁性纳米粒和磁性流体). Bejing: Chemical Industry Press, 2009. [2] Laurent S, Forge D, Port M, et al. Chem. Rev., 2008,108(6): 2064-2110 [3] Lu A H, Salabas E L, Schuth F. Angew. Chem. Int. Ed., 2007,46(8):1222-1244 [4] QIAO Rui-Rui(乔瑞瑞), ZENG Jian-Feng(曾剑峰), JIA Qiao -Juan(贾巧娟), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2012,28(5):993-1011 [5] Zhou J, Qiao X Y, Binks B P, et al. Langmuir, 2011,27: 3308-3316 [6] HE Guang-Yu(何光裕), ZHANG Yan(张艳), QIAN Mao- Gong(钱茂公), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2012,28(11):2306-2312 [7] Cheng W, Tang K B, Qi Y X, et al. J. Mater. Chem., 2010, 20:1799-1805 [8] JIAO Hua(焦华), YANG He-Qing(杨合情), SONG Yu-Zhe (宋玉哲), et al. Acta Chim. Sin. (Huaxue Xuebao), 2007,65 (20):2336-2342 [9] Deng H, Li X L, Peng Q, et al. Angew. Chem. Int. Ed., 2005,117:2842-2845 [10]Zhu M Y, Diao G W. J. Phys. Chem. C., 2011,115:1380-1387 [11]Xu Z C, Hou Y L, Sun S H. J. Am. Chem. Soc., 2007,129: 8698-8699 [12]LIU Bo-Jie(刘波洁), LI Xue-Yi(李学毅), CHEN Wei(陈威), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010, 26(3):784-788 [13]Ding H L, Zhang Y X, Wang S, et al. Chem. Mater., 2012, 24:4572-4580 [14]GAO Qian(高倩), ZHANG Ji-Lin(张吉林), HONG Guang-Yan(洪广言), et al. Chem. J. Chinese Universities (Gaodeng Xuexiao Huaxue Xuebao), 2011,32(3):552-559 [15]LU Ping(路苹), ZHANG Ji-Lin(张吉林), SUN De-Hui (孙德慧), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010,26(7):1177-1182 [16]Cao S W, Zhu Y J, Chang J. New Journal of Chemistry, 2008,32(9):1526-1530 [17]JI Jun-Hong(季俊红), JI Sheng-Fu(季生福), YANG Wei (杨伟), et al. Process. Chem. (Huaxue Jinzhan), 2010,22(8): 1566-1574 [18]McCarty P L, Bae J, Kim J. Environ. Sci. Technol., 2011,45: 7100-7106 [19]Ali I. Chem. Rev., 2012,112:5073-5091 [20]Brillas E, Sires I, Oturan M A. Chem. Rev., 2009,109(12): 6570-6631 [21]ZHANG Nai-Dong(张乃东), ZHENG Wei(郑威), Chem. Ind. Eng. Prog. (Huagong Jinzhan),2001,12:1-3 [22]Wang M Q, Wang N, Tang H Q, et al. Catal. Sci. Technol., 2012,2:187-194 [23]Wang N, Zhu L H, Wang M Q, et al. Ultrason. Sonochem., 2010(17):78-83 [24]Kaufman H S, Fankuchen I. Anal. Chem., 1949,21(1):24- 29 [25]Pinna N, Grancharov S, Beato P, et al. Chem. Mater., 2005, 17(11):3044-3049 [26]Sun G B, Dong B X, Cao M H, et al. Chem. Mater., 2011,23 (6):1587-1593

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(202)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return