Citation: LI Sha, ZHOU Hui, FAN Jie, XIAO Li-Ping. Synthesis of Mesoporous Aluminum Silicates and Their Catalytic Activity in Friedel-Crafts Alkylation Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 896-902. doi: 10.3969/j.issn.1001-4861.2013.00.160 shu

Synthesis of Mesoporous Aluminum Silicates and Their Catalytic Activity in Friedel-Crafts Alkylation Reaction

  • Corresponding author: XIAO Li-Ping, 
  • Received Date: 16 December 2012
    Available Online: 29 January 2013

    Fund Project: 国家自然科学基金(No.21271153) (No.21271153)浙江省创新团队项目(No.2012R10014-06) (No.2012R10014-06)吉林大学无机合成与制备化学国家重点实验室开放基金 (2012-03)资助项目。 (2012-03)

  • Ordered mesoporous aluminum silicates with strong acid sites were synthesized by sol-gel method. The resulted materials' structures were characterized by XRD, TEM, 27Al NMR, NH3-TPD and Py-FT-IR. The amount of surfactant and the Si/Al mole ratio would both affect the materials' meso-structure; while, the amount of HAc has little effect on the structure. TEM analysis confirmed that these aluminum silicates with different Si/Al mole ratios have an ordered 2D hexagonal regularity. Friedel-Crafts alkylation reaction of anisole and benzyl alcohol was used as the probe reaction to detect the acidic properties of these aluminum silicates. The Si/Al mole ratio played an important role in catalytic activity and the aluminum silicates with nSi/nAl=10 showed the best acid catalytic activity. NH3-TPD and Py-FT-IR suggested that the aluminum silicates with nSi/nAl=10 had much more Brönsted acidic sites than that of other Si/Al ratios.
  • 加载中
    1. [1]

      [1] Padro C L, Sad M E, Apesteguia C R, et al. Catal. Today, 2006,116:184-190

    2. [2]

      [2] Pirngruber G D, Seshan K, Lercher J A, J. Catal., 2000,190: 338-351

    3. [3]

      [3] Pirngruber G D, Seshan K, Lercher J A, Catal. Lett., 2000, 64:233-238

    4. [4]

      [4] Biscardi J A, Iglesia E, J. Catal., 1999,182:117-128

    5. [5]

      [5] Casagrande M, Storaro L, Lenarda M, et al. Appl. Catal. A, 2000,201:263-270

    6. [6]

      [6] Halgeri A B, Das J. Appl. Catal. A, 1999,181:347-354

    7. [7]

      [7] Mavrodinova V, Popova M, Borbely G P, et al. Appl. Catal. A, 2003,248:181-196

    8. [8]

      [8] Mavrodinova V, Popova M, Mihalyi R M, et al. Appl. Catal. A, 2003,248:197-209

    9. [9]

      [9] Mantri K, Komura K, Kubota Y, et al. J. Mol. Catal. A: Chem., 2005,236:168-175

    10. [10]

      [10] De Zarate D O, Bouyer F, Zschiedrich H, et al. Chem. Mater., 2008,20:1410-1420

    11. [11]

      [11] Gracia M J, Losada E, Luque R, et al. Appl. Catal. A, 2008, 349:148-155

    12. [12]

      [12] Tagusagawa C, Takagaki A, Takanabe K, et al. J. Phys. Chem. C, 2009,113:17421-17427

    13. [13]

      [13] Rahiala H, Beurroies I, Eklund T, et al. J. Catal., 1999,188: 14-23

    14. [14]

      [14] Rosenholm J B, Rahiala H, Puputti J, et al. Colloids Surf. A: Physicochem. Eng. Asp., 2004,250:289-306

    15. [15]

      [15] Taguchi A, Schuth F. Microporous Mesoporous Mater., 2005, 77:1-45

    16. [16]

      [16] Li Y, Zhang W H, Zhang L, et al. J. Phys. Chem. B, 2004, 108:9739-9744

    17. [17]

      [17] Li Q, Wu Z X, Tu B, et al. Microporous Mesoporous Mater., 2010,135:95-104

    18. [18]

      [18] Gomez-Cazalilla M, Merida-Robles J M, Gurbani A, et al. J. Solid State Chem., 2007,180:1130-1140

    19. [19]

      [19] Dragoi B, Dumitriu E, Guimon C, et al. Microporous Meso- porous Mater., 2009,121:7-17

    20. [20]

      [20] Gao L, Gu F N, Zhou Y, et al. J. Hazard. Mater., 2009,171: 378-385

    21. [21]

      [21] Takahashi H, Li B, Sasaki T, et al. Microporous Mesoporous Mater., 2001,4:755-762

    22. [22]

      [22] Yang H, Liu Q, Li Z, et al. Microporous Mesoporous Mater., 2010,127:213-218

    23. [23]

      [23] Fan J, Boettcher S W, Stucky G D, Chem. Mater., 2006,18: 6391-6396

    24. [24]

      [24] Schmucker M, Schneider H. J. Sol-Gel Sci. Technol., 1999, 15:191-199

    25. [25]

      [25] Han Y, Xiao F S, Wu S, et al. J. Phys. Chem. B, 2001,105: 7963-7966

    26. [26]

      [26] Song K, Guan J Q, Wu S J, et al, Catal. Commun., 2009,10: 631-634

    27. [27]

      [27] Ling L S, Hamdan H, J. Non-Cryst. Solids, 2008,354:3939- 3943

    28. [28]

      [28] Ren J, Li Z, Liu S S, et al. Catal. Lett., 2008,124:185-194

    29. [29]

      [29] Tagusagawa C, Takagaki A, Iguchi A, et al. Angew. Chem. Int. Ed., 2010,49:1128-1132

    30. [30]

      [30] Tagusagawa C, Takagaki A, Iguchi A, et al. Chem. Mater., 2010,22:3072-3078

    31. [31]

      [31] Rao Y X, Trudeau M, Antonelli D, J. Am. Chem. Soc., 2006,128:13996-13997

    32. [32]

      [32] Kumar C R, Prasad P S S, Lingaiah N, Appl. Catal. A, 2010,384:101-106

    33. [33]

      [33] ZHAO Xiu-Song(赵修松), WANG Qing-Xia(王清遐), LI Hong-Yuan(李宏愿), Chin. J. Appl. Chem. (Yingyong Huaxue), 1993,10(6):80-82

    34. [34]

      [34] TAN Ya-Nan(谭亚南), HAN Wei(韩伟), He Lin(何霖), et al. Sishuan Chem. Ind.(Sichuan Huagong), 2001,3:28-31

    35. [35]

      [35] ZHAO Da-Qing(赵大庆), PANG Wen-Qin(庞文琴). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 1999,7(3):357-359

    36. [36]

      [36] LI Guo-Ping(李国平), ZHANG Shao-Min (张少敏), ZHENG Bao-Ming(郑宝明), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013,29(1):75-80

    37. [37]

      [37] Wu Z Y, Wang H J, Zhuang T T, et al. Adv Funct. Mater., 2008,18:82-94

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(598)
  • Abstract views(789)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return