Citation: YIN Xi-Jun, LONG Neng-Bing, ZHANG Xiang-Zhou, HOU Lin-Xi. Preparation and Catalytic Property of Macroporous MgO/ZrO2 Composite Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 739-746. doi: 10.3969/j.issn.1001-4861.2013.00.098 shu

Preparation and Catalytic Property of Macroporous MgO/ZrO2 Composite Catalyst

  • Received Date: 6 October 2012
    Available Online: 28 November 2012

    Fund Project: 浙江省教育厅2012年度科研计划项目(No.Y201223742) (No.Y201223742)

  • A macroporous ZrO2 support was prepared by using a three-dimensional (3D) skeletal polymer through an in situ hydrolysis of Zirconium butoxide and a subsequent calcination at high temperature. Macroprocous MgO/ZrO2 composites were prepared by impregnation, calcination of magnesium nitrate solution. The composite materials were characterized by SEM, FTIR, XRD, TG-DSC. The results show that the macroporous zirconia supports have 3D ultrathin layer and the MgO nanoparticles cover on the 3D zirconia layer. The CO2-TPD curves indicate that the surface of zirconia supports has some weak alkaline sites and the sedimentation of MgO on the composite increases its alkalinity. The effect of preparation conditions on the catalytic activity was studied by using the transesterification of di-2-ethyl-hexyl carbonate from dimethyl carbonate and 2-ethyl-hexanol as the probe reaction. The results show that the macroporous MgO/ZrO2 solid base catalyst exhibits a better activity of transesterification. A better yield of the target product (65%) is obtained when the content of MgO is 50% and the calcination temperature is 600℃.
  • 加载中
    1. [1]

      [1] Sizgek G D, Sizgek E, Griffith C S, et al. Langmuir, 2008,24 (21):12323-12330

    2. [2]

      [2] Drisko G L, Luca V, Sizgek E, et al. Langmuir, 2009,25(9): 5286-5293

    3. [3]

      [3] Li H N, Zhang L, Dai H X, et al. Inorg. Chem., 2009,48(10): 4421-4434

    4. [4]

      [4] CUI Xiao-Yan(崔晓燕), DENG Wei(邓威). Chinese J. Chem. Adhe.(Huaxue Yu Nianhe), 2011,33(3):53-56

    5. [5]

      [5] LI Ting(李婷). Thesis for the Master of Harbin Technology University(哈尔滨工业大学硕士论文). 2011.

    6. [6]

      [6] Tian X K, Zeng Y L, Xiao T, et al. Microp. Mesop. Mater., 2011,143:357-361

    7. [7]

      [7] Ding Y Q, Sun H, Duan J Z, et al. Catal. Commun., 2011, 12:606-610

    8. [8]

      [8] Kitada A, Hasegawa G, Kobayash Y, et al. J. Am. Chem. Soc., 2012,134(26):10894-10898

    9. [9]

      [9] Drisko G L, Cao L, Kimling M C, et al. Appl. Mater. Interfaces, 2009,1(12):2893-2901

    10. [10]

      [10] Pablo M A, Massimiliano C, Ferdi S, et al. Angew. Chem. Int. Ed., 2006,45(48):8224-8227

    11. [11]

      [11] SHEN Yong(沈勇), WU Quan-Zhou(邬泉周), LI Yu-Guang (李玉光), et al. Acta Physico-Chimica Sinica(Wuli Huaxue Xuebao), 2006,22(9):1121-1125

    12. [12]

      [12] MA Fu(马富), LI Yun(李云), LUO Shi-Jie(罗时杰), et al. Chinese J. Rare Earths(Zhongguo Xitu Xuebao), 2006,24: 35-37

    13. [13]

      [13] SUN Rui-Qin(孙瑞琴), ZHOU Xu(周徐), SUN Lin-Bing(孙 林兵), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2007,28(12):2333-2337

    14. [14]

      [14] WEI Yi-Lun(魏一伦), CAO Yi(曹毅), ZHU Jian-Hua(朱建 华), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(3):233-238

    15. [15]

      [15] Liu S G, Huang S Y, Guan L X, et al. Microp. Mesop. Mater., 2007,102:304-309

    16. [16]

      [16] Liu S G, Ma J, Guan L X, et al. Microp. Mesop. Mater., 2009,117:466-471

    17. [17]

      [17] Zhang R F, Zhang L L. Polym. Bull., 2008,61:671-677

    18. [18]

      [18] LONG Neng-Bing(龙能兵), ZHANG Rui-Feng(张瑞丰). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(7): 1153-1158

    19. [19]

      [19] LONG Neng-Bing(龙能兵), WANG Qiu-jin(王秋景), ZHANG Rui-Feng(张瑞丰). Acta. Mater. Comp. Sin.(Fuhe Cailiao Xuebao), 2011,28(5):119-125

    20. [20]

      [20] HOU Lin-Xi(侯琳熙), YIN Xi-Jun(尹锡俊), LONG Neng- Bing(龙能兵). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):239-244

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(250)
  • Abstract views(497)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return