Citation: Cheng ZHANG, Zhen-Zhen HE, Wen-Li WANG, Wen-Jing GAO, Feng-Feng ZHANG, Xiao WANG, Long TANG, Er-Lin YUE, Ji-Jiang WANG, Xiang-Yang HOU. Design and synthesis of MOF-1 and Tb@MOF-1 as fluorescent probes for recognizing trace amounts of Cr2O72- and S2O82- ions[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(9): 1832-1840. doi: 10.11862/CJIC.2023.140 shu

Design and synthesis of MOF-1 and Tb@MOF-1 as fluorescent probes for recognizing trace amounts of Cr2O72- and S2O82- ions

  • Corresponding author: Xiao WANG, wx2248@126.com
  • Received Date: 19 December 2022
    Revised Date: 20 June 2023

Figures(4)

  • A new fluorescent probe metal-organic framework (MOF) materials formulated as [Cd(PLIA)(TIB)]n(MOF-1) was successfully obtained adopting 5-((4-pyridyl)methoxy)-isophthalic acid (H2PLIA) and 1, 3, 5-tris(1-imidazolyl)-benzene (TIB). MOF-1 possesses 2D networks with an ideal 1D tunnel, and the 1D tunnel is spaced and driven by the flexible triangle PLIA2- and rigid triangle TIB ligands. Employing the advantage of MOF-1 channel easy doping, efficient luminescent probe Tb@MOF-1 was also constructed using a coordinated post-synthetic modification strategy. MOF-1 and Tb@MOF-1 were fully characterized in detail, and the two probe materials have the same structural feature. The fluorescence recognition performance was investigated in detail, revealing a capability of MOF-1 for sensing Cr2O72-, Tb@MOF-1 for identifying S2O82- anion. Herein, the fabricated fluorescent probes exhibit fascinating features, such as fast response time, remarkable stability, excellent selectivity, and high sensitivity. The possible fluorescence recognition mechanism of Cr2O72- and S2O82- by MOF-1 and Tb@MOF-1 has been investigated, and the difference in the mechanism may be related to Tb3+ ion doping.
  • 加载中
    1. [1]

      Zhao J, Qu X L, Wang J M, Yan B. Photophysical tuning of viologen-based metal-organic framework hybrids via anion exchange and chemical sensing on persulfate (S2O82-)[J]. Ind. Eng. Chem. Res., 2019,58:18533-18539. doi: 10.1021/acs.iecr.9b04049

    2. [2]

      Qin Z S, Dong W W, Zhao J, Wu Y P, Zhang Q C, Li D S. A water-stable Tb(Ⅲ)-based metal-organic gel (MOG) for detection of antibiotics and explosives[J]. Inorg. Chem. Front., 2018,5:120-126. doi: 10.1039/C7QI00495H

    3. [3]

      Yi K Y, Li H, Zhang X T, Zhang L. Designed Tb(Ⅲ)-functionalized MOF-808 as visible fluorescent probes for monitoring bilirubin and identifying fingerprints[J]. Inorg. Chem., 2021,60:3172-3180. doi: 10.1021/acs.inorgchem.0c03312

    4. [4]

      Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist R L, Bjerg P L. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Crit. Rev. Environ. Sci. Technol., 2010,40:55-91. doi: 10.1080/10643380802039303

    5. [5]

      Lin H R. Solution polymerization of acrylamide using potassium persulfate as an initiator: kinetic studies, temperature and pH dependence[J]. Eur. Polym. J., 2001,37:1507-1510. doi: 10.1016/S0014-3057(00)00261-5

    6. [6]

      Branson J, Naber J, Edelen G. A simplistic printed circuit board fabrication process for course projects[J]. IEEE Trans. Educ., 2000,43:257-261. doi: 10.1109/13.865197

    7. [7]

      Mensing T, Marek W, Raulf-Heimsoth M, Baur X. Acute exposure to hair bleach causes airway hyperresponsiveness in a rabbit model[J]. European Respiratory Journal, 1998,12:1371-1374. doi: 10.1183/09031936.98.12061371

    8. [8]

      Zhu S Y, Yan B. A novel sensitive luminescent probe of S2O82- and Fe3+ based on covalent post-functionalization of a zirconium(Ⅳ) metal-organic framework[J]. Dalton Trans., 2018,47:11586-11592. doi: 10.1039/C8DT02051E

    9. [9]

      Karedal M H, Mürtstedt H, Jeppsson M C, Kronholm Diab K, Nielsen J, Jünsson B A G, Lindh C H. Time-dependent proteomic TRAQ analysis of nasal lavage of hairdressers challenged by persulfate[J]. J. Proteome Res., 2010,9:5620-5628. doi: 10.1021/pr100436a

    10. [10]

      Wu M, Zhang Y, Wang Q, Li N, Wang X, Chai H M, Gao L J, Hou X Y. Cr2O72- anion fluorescent probe effective detection based on novel highly stable cadmium coordination polymers material[J]. J. Solid State Chem., 2022,308122883. doi: 10.1016/j.jssc.2022.122883

    11. [11]

      FENG Y L, ZHANG F X, JIANG W J, KUANG D Z. One-pot solvo-thermal synthesis, structure, and fluorescence properties of bis(substituted salicylaldehyde) m-phthaloylhydrazone organotin complexes[J]. Chinese J. Inorg. Chem., 2022,38(12):2443-2451. doi: 10.11862/CJIC.2022.218

    12. [12]

      Wang X, Han Y, Han X X, Hou X Y, Wang J J, Fu F. Highly selective and sensitive detection of Hg2+, Cr2O72-, and nitrobenzene/2, 4-dinitrophenol in water via two fluorescent Cd-CPs[J]. J. Solid State Chem., 2022,315123523. doi: 10.1016/j.jssc.2022.123523

    13. [13]

      Li L L, Feng X Q, Han R P, Zang S Q, Yang X G. Cr(Ⅵ) removal via anion exchange on a silver-triazolate MOF[J]. J. Hazard. Mater., 2017,321:622-628. doi: 10.1016/j.jhazmat.2016.09.029

    14. [14]

      Liu S, Chen H, Lv H, Qin Q P, Fan L M, Zhang X T. Chemorobust 4p-5p {InPb}-organic framework for efficiently catalyzing cycloaddition of CO2 with epoxides and deacetalization-Knoevenagel condensation[J]. Mater. Today Chem., 2022,24100984. doi: 10.1016/j.mtchem.2022.100984

    15. [15]

      Li Z H, Xue L P, Wang Y, Wang Q, Zhao B T. Two Zn(Ⅱ) coordination polymers constructed from sulfate and isomeric viologen-carboxylate ligands: Crystal structures, photochromism and ammonia vapochromism[J]. Dyes Pigment., 2021,195109743. doi: 10.1016/j.dyepig.2021.109743

    16. [16]

      Benito-Pena E, Urraca J L, Moreno-Bondi M C. Quantitative determination of penicillin Ⅴ and amoxicillin in feed samples by pressurised liquid extraction and liquid chromatography with ultraviolet detection[J]. J. Pharm. Biomed. Anal., 2009,49:289-294. doi: 10.1016/j.jpba.2008.11.016

    17. [17]

      Gu T Y, Dai M, Young D J, Ren Z G, Lang J P. Luminescent Zn(Ⅱ) coordination polymers for highly selective sensing of Cr(Ⅲ) and Cr(Ⅵ) in water[J]. Inorg. Chem., 2017,56:4668-4678. doi: 10.1021/acs.inorgchem.7b00311

    18. [18]

      Gao X C, Cui R X, Ji G F, Liu Z L. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy[J]. Nanoscale, 2018,10:6205-6211. doi: 10.1039/C7NR08892B

    19. [19]

      Wu Y P, Wu X Q, Wang J F, Zhao J, Dong W W, Li D S, Zhang Q C. Assembly of two novel Cd3/(Cd3Cd5)-cluster-based metal-organic frameworks: Structures, luminescence, and photocatalytic degradation of organic dyes[J]. Cryst. Growth Des., 2016,16:2309-2316. doi: 10.1021/acs.cgd.6b00093

    20. [20]

      Chen H Y, Qiu Q M, Sharif S, Ying S N, Wang Y B, Ying Y X. Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nano-enzymes for biosensing applications[J]. ACS Appl. Mater. Interfaces, 2018,10:24108-24115. doi: 10.1021/acsami.8b04737

    21. [21]

      Feng L, Dong C L, Li M F, Li L X, Jiang X, Gao R, Wang R J, Zhang L J, Ning Z, Gao D J, Bi J. Terbium-based metal-organic frameworks: Highly selective and fast respond sensor for styrene detection and construction of molecular logic gate[J]. J. Hazard. Mater., 2020,388:121816-112825. doi: 10.1016/j.jhazmat.2019.121816

    22. [22]

      Qiu Q M, Chen H Y, Wang Y X, Ying Y B. Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites[J]. Coord. Chem. Rev., 2019,387:60-78. doi: 10.1016/j.ccr.2019.02.009

    23. [23]

      Zhang X X, Zhang W J, Li C L, Qin X H, Zhu C Y. Eu3+-post doped UIO-66-type metal-organic framework as a luminescent sensor for Hg2+ detection in aqueous media[J]. Inorg. Chem., 2019,58:3910-3915. doi: 10.1021/acs.inorgchem.8b03555

    24. [24]

      Xue Y Y, Bai X Y, Zhang J, Wang Y, Li S N, Jiang Y C, Hu M C, Zhai Q G. Precise pore space partition combined with high-density hydrogen-bonding acceptor within a metal-organic framework for highly efficient acetylene storage and separation[J]. Angew. Chem. Int. Ed., 2021,60:10122-10128. doi: 10.1002/anie.202015861

    25. [25]

      Wang H H, Zhang Y, Yang D B, Hou L, Li Z Y, Wang Y Y. Fluorine-substituted regulation in two comparable isostructural Cd(Ⅱ) coordination polymers: Enhanced fluorescence detection for tetracyclines in water[J]. Cryst. Growth Des., 2021,21:2488-2497. doi: 10.1021/acs.cgd.1c00110

    26. [26]

      Wang K, Hu X L, Li X, Su Z M, Zhou E L. Solvent induced two Cd-MOFs as luminescent sensors for picric acid, Fe3+ and Cr2O72-[J]. J. Solid State Chem., 2021,298122128. doi: 10.1016/j.jssc.2021.122128

    27. [27]

      WANG J J, WANG L B, YUE E L, LI J F, BAI C, TANG L, WANG X, HOU X Y, ZHANG Y Q. A highly stable Cd(Ⅱ) coordination polymer for detection of roxithromycin and B4O72-[J]. Chinese J. Inorg. Chem., 2022,38(12):2491-2498. doi: 10.11862/CJIC.2022.239

    28. [28]

      Qayyum M, Bushra T, Khan Z A, Gul H, Majeed S, Yu C, Farooq U, Shaikh A J, Shahzad S A. Synthesis and tetraphenylethylene-based aggregation-induced emission probe for rapid detection of nitroaromatic compounds in aqueous media[J]. ACS Omega, 2021,6:25447-25460. doi: 10.1021/acsomega.1c03439

    29. [29]

      Zhang F F, Han Y, Liang Q, Wu M, Wang X, Tang L, Yue E L, Wang J J, Fu F, Hou X Y. Visible light-assisted photocatalytic degradation of methylene blue in water by highly chemically stable Cd-coordination polymers at room temperature[J]. New J. Chem., 2021,45:19660-19665. doi: 10.1039/D1NJ03958J

    30. [30]

      Wang Z J, Han L J, Gao X J, Zheng H G. Three Cd(Ⅱ) MOFs with different functional groups: Selective CO2 capture and metal ions detection[J]. Inorg. Chem., 2018,57:5232-5239. doi: 10.1021/acs.inorgchem.8b00272

    31. [31]

      Moros J, Laserna J. New Raman-laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform[J]. J. Anal. Chem., 2011,83:6275-6285. doi: 10.1021/ac2009433

    32. [32]

      Nagarkar S S, Joarder B, Chaudhari A K, Mukherjee S, Ghosh S K. Highly selective detection of nitro explosives by a luminescent metalorganic framework[J]. Angew. Chem. Int. Ed., 2013,52:2881-2885. doi: 10.1002/anie.201208885

    33. [33]

      Zhao Y F, Zeng H, Zhu X W, Lu W G, Li D. Metal-organic frameworks as photoluminescent biosensing platforms: mechanisms and applications[J]. Chem. Soc. Rev., 2021,50:4484-4513. doi: 10.1039/D0CS00955E

  • 加载中
    1. [1]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    2. [2]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    5. [5]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    9. [9]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    10. [10]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    11. [11]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    12. [12]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    16. [16]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    17. [17]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    18. [18]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    19. [19]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    20. [20]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

Metrics
  • PDF Downloads(7)
  • Abstract views(400)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return