Citation: Teng-Yue MA, Jin-Ling AN, Peng ZHANG, Jin-Rong LIU, Wei-Yan HE. Synthesis and properties of P2-Na2/3Mn1/3Bi1/3Ni1/3O2 as long-life and high voltage sodium-ion battery cathode[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(6): 1023-1030. doi: 10.11862/CJIC.2023.077 shu

Synthesis and properties of P2-Na2/3Mn1/3Bi1/3Ni1/3O2 as long-life and high voltage sodium-ion battery cathode

  • Corresponding author: Wei-Yan HE, heweiyan@imut.edu.cn
  • Received Date: 11 January 2023
    Revised Date: 18 April 2023

Figures(7)

  • Layered nickel-based cathode materials are of great interest due to their high voltage and specific capacities for sodium ion batteries. However, the Jahn-Teller effect is detrimental for achieving considerable cycling stability at high voltage (4.5 V) and rate capability. Herein, a P2-type Na2/3Mn1/3Bi1/3Ni1/3O2 cathode material was synthesized by adjusting the process conditions of sol-gel, and used as positive active materials to assemble sodium ion battery in air environment. The improved cycling and rate performance under high voltage can be achieved by Mnsubstitution and Bi-substitution. In a wide voltage range of 1.2 to 4.5 V, the material maintained a specific discharge capacity of 90.39 mAh·g-1 after 50 cycles. The cathode obtained a remarkable capacity retention of 96.96% after 50 cycles at 1C (115 mA·g-1) and 80.15% capacity retention up to 850 cycles from 2.0 to 4.0 V. The above data indicate that the cathode materials own an extremely long cycling life and better rate capability.
  • 加载中
    1. [1]

      Pimlott J L, Street R J, Down M P, Banks C E. Electrochemical overview: A summary of ACoxMnyNizO2 and metal oxides as versatile cathode materials for metal-ion batteries[J]. Adv. Funct. Mater., 2021,31(51)2107761. doi: 10.1002/adfm.202107761

    2. [2]

      Xiang X D, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Adv. Mater., 2015,27(36):5343-5364. doi: 10.1002/adma.201501527

    3. [3]

      Wheeler S, Capone I, Day S, Tang C, Pasta M. Low-potential prussian blue analogues for sodium-ion batteries: Manganese hexacyanochromate[J]. Chem. Mater., 2019,31(7):2619-2626. doi: 10.1021/acs.chemmater.9b00471

    4. [4]

      Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides[J]. Physica. B+C, 1980,99(1):81-85.  

    5. [5]

      Han M H, Gonzalo E, Singh G, Rojo T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries[J]. Energy Environ. Sci., 2015,8(1):81-102. doi: 10.1039/C4EE03192J

    6. [6]

      Park K, Yu B C, Goodenough J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chem. Mater., 2015,27(19):6682-6688. doi: 10.1021/acs.chemmater.5b02684

    7. [7]

      Wang Y, Li W, Hu G, Peng Z D, Cao Y B, Gao H C, Du K, Goodenough J B. Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O[J]. Chem. Mater., 2019,31(14):5214-5223. doi: 10.1021/acs.chemmater.9b01456

    8. [8]

      Khan M A, Han D, Lee G, Kim Y I, Kang Y M. P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries[J]. J. Alloy. Compd., 2019,771:987-993. doi: 10.1016/j.jallcom.2018.09.033

    9. [9]

      Gao L, Chen S, Hu H, Cheng H Y, Zhang L L, Yang X L. Hierarchical NaxCoO2 microspheres with low surface area toward high performance sodium ion batteries[J]. Mater. Lett., 2020,260126965. doi: 10.1016/j.matlet.2019.126965

    10. [10]

      SUN Y Y, LI S Q, WANG C R, QIAN Y X, ZHENG S Y, YUAN T. Research proaress of lavered transition metal oxide cathode materials for sodium ion batteries[J]. Chinese Journal of Rare Metals, 2022,46(6):776-795.  

    11. [11]

      Wang L G, Wang J J, Zhang X Y, Ren Y, Zuo P J, Yin G P, Wang J. Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries[J]. Nano Energy, 2017,34:215-223. doi: 10.1016/j.nanoen.2017.02.046

    12. [12]

      Kaushalya R, Iyngaran P, Kuganathan N, Chroneos A. Defect, diffusion and dopant properties of NaNiO2: Atomistic simulation study[J]. Energies, 2019,12(16)3094. doi: 10.3390/en12163094

    13. [13]

      Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorg. Chem., 2012,51(11):6211-6220. doi: 10.1021/ic300357d

    14. [14]

      Yu H, Guo S, Zhu Y, Ishida M, Zhou H. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries[J]. Chem. Commun., 2014,50(4):457-459. doi: 10.1039/C3CC47351A

    15. [15]

      Kubota K, Yoda Y, Komaba S. Origin of enhanced capacity retention of P2-type Na2/3Ni1/3-xMn2/3CuxO2 for Na-ion batteries[J]. J. Electrochem. Soc., 2017,164(12):A2368-A2373. doi: 10.1149/2.0311712jes

    16. [16]

      HEI W Y, ZHANG P, TENG Y Y, AN J L, MA T Y, LIU J R. Method for assembling sodium-ion half-cells in air: CN202111536441. X. 2022-03-22.

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(12)
  • Abstract views(1373)
  • HTML views(239)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return