Citation: Xin-Feng GE, Jun HU, Ming-Hui WANG, Ting SHU, Yun-Xiao LIANG. Preparation and catalytic performance of macro-mesoporous Ag/PDA/MMS composite[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 906-916. doi: 10.11862/CJIC.2023.063 shu

Preparation and catalytic performance of macro-mesoporous Ag/PDA/MMS composite

  • Corresponding author: Yun-Xiao LIANG, liangyunxiao@nbu.edu.cn
  • Received Date: 2 January 2023
    Revised Date: 14 April 2023

Figures(13)

  • A millimeter-sized macro-mesoporous SiO2 (MMS) was prepared by a dual-templating method, using an epoxy resin macroporous polymer with 3D skeleton structure as the macroscopic shape and macropore structure directing agent and PEG 2000 as the mesopore porogen and the PDA-modified MMS (PDA/MMS, PDA=polydopamine) was obtained via the oxidative self-polymerization of dopamine (DA) on the pore wall of MMS, then the in situ reduction of Ag+ by the PDA on the surface of PDA/MMS formed the macro-mesoporous Ag/PDA/MMS composite. The as-prepared materials were characterized by scanning electron microscope, transmission electron microscope, N2 adsorption-desorption, X-ray photoelectron spectroscopy, X-ray diffraction, UV-Vis, FT-IR, and thermogravimetry techniques. The results show that MMS has the advantages of both nano-mesoporous materials and macro-sized macroporous materials, and possesses large specific surface area and pore volume, and high mechanical strength. Ag/PDA/MMS exhibited high catalytic activity in the reduction of p-nitrophenol (4-NP), and the turnover frequency (TOF) reached 2.97 min-1, which is attributed to its unique structure: the interconnected macropores greatly reduce mass transfer resistance, the short mesopore channels significantly increase the accessibility of active sites and effectively confine the size of silver nanoparticles, and the large specific surface area provides a large number of active sites for reactants. Moreover, the millimeter-sized Ag/PDA/MMS could be easily separated from the reaction system, and it could still convert 4-NP to p-aminophenol (4-AP) completely after five cycles. In addition, Ag/PDA/ MMS also showed a good catalytic effect in the reduction of methylene blue (MB).
  • 加载中
    1. [1]

      Mejia Y R, Bojireddy N K R. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles[J]. RSC Adv., 2022,12:18661-18675. doi: 10.1039/D2RA02663E

    2. [2]

      Bojireddy N K R, Mejia Y R, Aminabhavi T M, Barba V, Becerra R H, Flores A D A, Agarwal V. The identification of byproducts from the catalytic reduction reaction of 4-nitrophenol to 4-aminophenol: A systematic spectroscopic study[J]. J. Environ. Manage., 2022,316115292. doi: 10.1016/j.jenvman.2022.115292

    3. [3]

      Balram D, Lian K Y, Sebastian N, Al-Mubaddel F S, Noman M T. Bi-functional renewable biopolymer wrapped CNFs/Ag doped spinel cobalt oxide as a sensitive platform for highly toxic nitroaromatic compound detection and degradation[J]. Chemosphere, 2022,291132998. doi: 10.1016/j.chemosphere.2021.132998

    4. [4]

      Xia C Q, Huang W Y, Kang X T, Chen P Y, You L J, Guo L Q. Salt-template preparation of Mo5N6 nanosheets with peroxidase- and catalase-like activities and application for colorimetric determination of 4-aminophenol[J]. Microchim. Acta, 2022,1891. doi: 10.1007/s00604-021-05112-5

    5. [5]

      Luo S H, Liu Z F, Liu Y, Almatrafi E, Shao B B, Song B, Zhou C Y, Fu Y K, He M, Zeng Z T, Zeng G M. Versatile CMPs as platforms to support Ag nanocatalysts for nitrophenol hydrogenation in continuous flow-through process[J]. Chem. Eng. J., 2022,442136207. doi: 10.1016/j.cej.2022.136207

    6. [6]

      WU H H, ZU F H, FU S, DONG X L, LI S Y, YI J J, HAO H J, XU Q H. Ag@Silsequioxanes: Synthesis and its catalytic reduction performance for p-nitrophenol[J]. Chinese J. Inorg. Chem., 2021,37(11):1961-1969. doi: 10.11862/CJIC.2021.225

    7. [7]

      Nandana C N, Christeena M, Bharathi D. Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications[J]. J. Clust. Sci., 2022,33:269-279. doi: 10.1007/s10876-020-01947-9

    8. [8]

      He J F, Song G, Wang X Y, Zhou L, Li J M. Multifunctional magnetic Fe3O4/GO/Ag composite microspheres for SERS detection and catalytic degradation of methylene blue and ciprofloxacin[J]. J. Alloy. Compd., 2022,893162226. doi: 10.1016/j.jallcom.2021.162226

    9. [9]

      Cheng Y J, Luo G F, Zhu J Y, Xu X D, Zeng X, Cheng D B, Li Y M, Wu Y, Zhang X Z, Zhuo R X, He F. Enzyme-induced and tumor- targeted drug delivery system based on multifunctional mesoporous silica nanoparticles[J]. ACS Appl. Mater. Interfaces, 2015,7:9078-9087. doi: 10.1021/acsami.5b00752

    10. [10]

      Liao G F, Gong Y, Zhong L, Fang J S, Zhang L, Xu Z S, Gao H Y, Fang B Z. Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction[J]. Nano Res., 2019,10:2407-2436.

    11. [11]

      LIU Y, ZAN J H, CHEN Y, FAN Q L. Preparation and photocatalytic properties of Ag/Bi2WO6 composites[J]. Chinese J. Inorg. Chem., 2020,36(8):1499-1505.  

    12. [12]

       

    13. [13]

      ZENG Y, JIANG L, ZHANG X X, XIE S H, PEI Y, QIAO M H. W-doped hierarchically porous silica nanosphere supported platinum for catalytic glycerol hydrogenolysis to 1, 3-propanediol[J]. Acta Chim. Sin., 2022,80:903-912.  

    14. [14]

      Ji T, Chen L, Mu L W, Yuan R X, Knoblauch M, Bao F S, Zhu J H. In-situ reduction of Ag nanoparticles on oxygenated mesoporous carbon fabric: Exceptional catalyst for nitroaromatics reduction[J]. Appl. Catal. B-Environ., 2016,182:306-315. doi: 10.1016/j.apcatb.2015.09.024

    15. [15]

      CHEN J H, MENG T, WU L, SHI H C, YANG F, SUN J, YANG X R. Study on synthesis and antibacterial properties of AgNPs@ZIF-67 composite nanoparticles[J]. Acta Chim. Sin., 2022,80:110-115.  

    16. [16]

      Lin J B, Zheng R J, Huang L P, Tu Y R, Li X, Chen J F. Folic acid-mediated MSNs@Ag@Geb multifunctional nanocomposite heterogeneous platform for combined therapy of non-small cell lung cancer[J]. Colloid Surf. B-Biointerfaces, 2022,217112639. doi: 10.1016/j.colsurfb.2022.112639

    17. [17]

      Li T T, Liu Y, Qi S C, Liu X Q, Huang L, Sun L B. Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base[J]. J. Colloid Interface Sci., 2018,526:366-373. doi: 10.1016/j.jcis.2018.05.002

    18. [18]

      Yu C B, Wu T, Yang F H, Wang H, Rao W H, Zhao H B. Interfacial engineering to construct p-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins[J]. J. Colloid Interface Sci., 2022,628:851-863. doi: 10.1016/j.jcis.2022.08.117

    19. [19]

      Sun Y Y, Li G H, Gong Y, Sun Z F, Yao H L, Zhou X X. Ag and TiO2 nanoparticles co-modified defective zeolite TS-1 for improved photocatalytic CO2 reduction[J]. J. Hazard. Mater., 2021,403124019. doi: 10.1016/j.jhazmat.2020.124019

    20. [20]

      Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure[J]. Angew. Chem. Int. Ed., 2011,50:11156-11161. doi: 10.1002/anie.201105678

    21. [21]

      Hu L X, Zhang Z Y, Zhang H, Cheng W J, Liang Y X. Macroscopic macroporous titanosilicate constructed of a micro-mesoporous ultrathin nanofilm[J]. RSC Adv., 2020,56:3027-3030.

    22. [22]

      BAI W J, LI Y, CAO D L, WU Y F, LIANG Y X. Immobilization of pseudomonas fluorescens lipase on PDA/SiO2 macroporous composite[J]. Chinese J. Inorg. Chem., 2016,32(11):1973-1980. doi: 10.11862/CJIC.2016.261

    23. [23]

      Cheng W J, Li Y, Li X Y, Bai W J, Liang Y X. Preparation and characterization of PDA/SiO2 nanofilm constructed macroporous monolith and its application in lipase immobilization[J]. J. Taiwan Inst. Chem. Eng., 2019,104:351-359. doi: 10.1016/j.jtice.2019.09.013

    24. [24]

      Li H, Wu L H Y, Zhang H M, Yu F Y, Peng L C. Mussel-inspired fabrication of superhydrophobic cellulose-based paper for the integration of excellent antibacterial activity, effective oil/water separation and photocatalytic degradation[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2022,640128490. doi: 10.1016/j.colsurfa.2022.128490

    25. [25]

      Cheng W J, Tao K, Wu Y F, Li X Y, Liang Y X. Preparation of hierarchical porous S-1/silica monoliths by steaming crystallization[J]. ChemistrySelect, 2019,4:3741-3744. doi: 10.1002/slct.201900223

    26. [26]

      Kadib A E, Chimenton R, Sachse A, Fajula F, Galarneau A, Coq B. Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis[J]. Angew. Chem. Int. Ed., 2009,48:4969-4972. doi: 10.1002/anie.200805580

    27. [27]

      Ye W T, Jiang Y, Liu Q, Xu D D, Zhang E, Cheng X W, Wan Z, Liu C. The preparation of visible light-driven ZnO/Ag2MoO4/Ag nanocomposites with effective photocatalytic and antibacterial activity[J]. J. Alloy. Compd., 2021,891161898.

    28. [28]

      Michalska M, Pavlovský J, Lemanski K, Małecka M, Ptak M, Novak V, Kormunda M, Matejka V. The effect of surface modification with Ag nanoparticles on 21 nm TiO2: Anatase/rutile material for application in photocatalysis[J]. Mater. Today Chem., 2022,26101123. doi: 10.1016/j.mtchem.2022.101123

    29. [29]

      Zhang C, Huan Y C, Li Y, Luo Y F, Debliquy M. Low concentration isopropanol gas sensing properties of Ag nanoparticles decorated In2O3 hollow spheres[J]. J. Adv. Ceram., 2022,11:379-391. doi: 10.1007/s40145-021-0530-x

    30. [30]

      Meydan I, Seckin H, Burhan H, Gür T, Tanhaei B, Sen F. Arum italicum mediated silver nanoparticles: Synthesis and investigation of some biochemical parameters[J]. Environ. Res., 2022,204112347. doi: 10.1016/j.envres.2021.112347

    31. [31]

      Wei M M, Marrakchi F, Yuan C, Cheng X X, Jiang D, Zafar F F, Fu Y X, Wang S. Adsorption modeling, thermodynamics, and DFT simulation of tetracycline onto mesoporous and high-surface-area NaOH-activated macroalgae carbon[J]. J. Hazard. Mater., 2022,425127887. doi: 10.1016/j.jhazmat.2021.127887

    32. [32]

      Messaoudi N E, Khomri M E, Ablouh E H, Bouich A, Lacheria A, Jada A, Lima E C, Sher F. Biosynthesis of SiO2 nanoparticles using extract of nerium oleander leaves for the removal of tetracycline antibiotic[J]. Chemosphere, 2022,287132453. doi: 10.1016/j.chemosphere.2021.132453

    33. [33]

      Alkayal N S, Altowairka H, Alosaimi A M, Hussein M A. Network template-based cross-linked poly(methyl methacrylate)/tin(Ⅳ) oxide nanocomposites for the photocatalytic degradation of MB under UV irradiation[J]. J. Mater. Res. Technol.-JMRT, 2022,18:2721-2734. doi: 10.1016/j.jmrt.2022.03.133

    34. [34]

      Wang Z X, Wang W, Wamsley M, Zhang D M, Wang H. Colloidal polydopamine beads: A photothermally active support for noble metal nanocatalysts[J]. ACS Appl. Mater. Interfaces, 2022,14:17560-17569. doi: 10.1021/acsami.2c03183

    35. [35]

      Kalyan I, Biswas S, Pal T, Pal A. Use of surfactant bilayer modified silica for evolution and application of size variable solid Ag nanoparticle catalyst[J]. Mater. Chem. Phys., 2022,290126579. doi: 10.1016/j.matchemphys.2022.126579

    36. [36]

      Cao H L, Huang H B, Chen Z, Karadeniz B, Lü J, Cao R. Ultrafine silver nanoparticles supported on a conjugated microporous polymer as high-performance nanocatalysts for nitrophenol reduction[J]. ACS Appl. Mater. Interfaces, 2017,9:5231-5236. doi: 10.1021/acsami.6b13186

    37. [37]

      Tzounis L, Contreras-Caceres R, Schellkopf L, Jehnichen D, Fischer D, Cai C Z, Uhlmann P, Stamm M. Controlled growth of Ag nanoparticles decorated onto the surface of SiO2 spheres: A nanohybrid system with combined SERS and catalytic properties[J]. RSC Adv., 2014,4(34):17846-17855. doi: 10.1039/C4RA00121D

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    3. [3]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(3)
  • Abstract views(859)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return