Citation: Wen-Min WANG, Na QIAO, Shan-Shan DONG, Ying CHEN, Xiao-Yan XIN, Guo-Li YANG, Ming FANG. Crystal structure, slow magnetic relaxation behavior and conversion CO2 of a tetranuclear Ho(Ⅲ)-based complex[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 917-927. doi: 10.11862/CJIC.2023.053 shu

Crystal structure, slow magnetic relaxation behavior and conversion CO2 of a tetranuclear Ho(Ⅲ)-based complex

Figures(8)

  • A novel Ho4 complex, namely [Ho4(NO3)2(acac)4(L)2(CH3OH)2]·2CH3CN, where H4L=(E)-2-(hydroxymethyl)-2-(((2-hydroxynaphthalen-1-yl)methylene)amino)propane-1,3-diol and acac=acetylacetone, has been constructed by using a polydentate Schiff base ligand (H4L) reacting with Ho(acac)3·2H2O. X-ray diffraction analysis indicates that complex 1 shows a central symmetric tetranuclear structure. Both eight-coordinated Ho1(Ⅲ) and Ho2(Ⅲ) ions possess a distorted triangular dodecahedron geometrical configuration. Complex 1 shows good solvent stability. The magnetic study reveals that complex 1 exhibits a slow relaxation of the magnetization behavior. To our knowledge, complex 1 is a rarely Ho(Ⅲ)-based complex displaying slow magnetic relaxation behavior under Hdc=0 Oe filed. Interestingly, complex 1 exhibited high catalytic activity and could effectively catalyze the cycloaddition reaction of CO2 with vari-ous epoxides.
  • 加载中
    1. [1]

      Zheng X Y, Kong X J, Zheng Z, Long L S, Zheng L S. High-nuclearity lanthanide-containing clusters as potential molecular magnetic coolers[J]. Acc. Chem. Res., 2018,51:517-525. doi: 10.1021/acs.accounts.7b00579

    2. [2]

      Zheng X Y, Xie J, Kong X J, Long L S, Zheng L S. Recent advances in the assembly of high-nuclearity lanthanide clusters[J]. Coord. Chem. Rev., 2019,378:222-236. doi: 10.1016/j.ccr.2017.10.023

    3. [3]

      Ding Y S, Chilton N F, Winpenny R E P. On approaching the limit of molecular magnetic anisotropy: A near-perfect pentagonal bipyramidal dysprosium(Ⅲ) single-molecule magnet[J]. Angew. Chem. Int. Ed., 2016,55:16071-16074. doi: 10.1002/anie.201609685

    4. [4]

      Peng J B, Kong X J, Zhang Q C, Orendáč M, Prokleška J, Ren Y P, Long L S, Zheng Z, Zheng L S. Beauty, symmetry, and magnetocaloric effect-four-shell keplerates with 104 lanthanide atoms[J]. J. Am. Chem. Soc., 2014,136:17938-17941. doi: 10.1021/ja5107749

    5. [5]

      Dong J, Cui P, Shi P F, Cheng P, Zhao B. Ultrastrong alkali-resisting lanthanide-zeolites assembled by[Ln60] nanocages[J]. J. Am. Chem. Soc., 2015,137:15988-15991. doi: 10.1021/jacs.5b10000

    6. [6]

      Zhu Z H, Peng J M, Wang H L, Zou H H, Liang F P. Assembly mechanism and heavy metal ion sensing of cage-shaped lanthanide nanoclusters[J]. Cell Rep. Phys. Sci., 2020,1(8)100165. doi: 10.1016/j.xcrp.2020.100165

    7. [7]

      Liu J, Chen Y C, Liu J L. A stable pentagonal bipyramidal Dy(Ⅲ) single-ion magnet with a record magnetization reversal barrier over 1000 K[J]. J. Am. Chem. Soc., 2016,138:5441-5450. doi: 10.1021/jacs.6b02638

    8. [8]

      Tang J K, Hewitt I, Madhu N T, Chastanet G, Wernsdorfer W, Anson C E, Benell C, Sessoli R, Powell A K. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states[J]. Angew. Chem. Int. Ed., 2006,45:1729-1733. doi: 10.1002/anie.200503564

    9. [9]

      Hewitt I J, Tang J K, Madhu N T, Anson C E, Lan Y H, Luzon J, Etienne M, Sessoli R, Powell A K. Coupling Dy3 triangles enhances their slow magnetic relaxation[J]. Angew. Chem. Int. Ed., 2010,49:6352-6356. doi: 10.1002/anie.201002691

    10. [10]

      Guo Y N, Xu G F, Gamez P, Zhao L, Lin S Y, Deng R P, Tang J K, Zhang H J. Two-step relaxation in a linear tetranuclear dysprosium(Ⅲ) aggregate showing single-molecule magnet behavior[J]. J. Am. Chem. Soc., 2010,132:8538-8539. doi: 10.1021/ja103018m

    11. [11]

      Liu J L, Guo F S, Meng Z S, Zheng Y Z, Leng J D, Tong M L, Ungur L, Chibotaru L F, Heroux K J, Hendrickson D N. Symmetry related[Dy6Mn12] cores with different magnetic anisotropies[J]. Chem. Sci., 2011,2:1268-1272. doi: 10.1039/c1sc00166c

    12. [12]

      Wang W M, Wu Z L, Cui J Z. Molecular assemblies from linear-shaped Ln4 clusters to Ln8 clusters using different β-diketonates: Disparate magnetocaloric effects and single-molecule magnet behaviors[J]. Dalton Trans., 2021,50:12931-12943. doi: 10.1039/D1DT01344K

    13. [13]

      Wang W M, He L Y, Wang X X, Shi Y, Wu Z L, Cui J Z. Linear-shaped Ln4 and Ln6 clusters constructed by a polydentate Schiff base ligand and a β-diketone co-ligand: Structures, fluorescence properties, magnetic refrigeration and single-molecule magnet behavior[J]. Dalton Trans., 2019,48:16744-16755. doi: 10.1039/C9DT03478A

    14. [14]

      Wang W M, Kang X M, Shen H Y, Wu Z L, Gao H L, Cui J Z. Modulating single-molecule magnet behavior towards multiple magnetic relaxation processes through structural variation in Dy4 complexes[J]. Inorg. Chem. Front., 2018,5:1876-1885. doi: 10.1039/C8QI00214B

    15. [15]

      Wang W M, Wu Z L, Zhang Y X, Wei H Y, Gao H L, Cui J Z. Self-assembly of tetra-nuclear lanthanide complexes via atmospheric CO2 fixation: Interesting solvent-induced structures and magnetic relaxation conversions[J]. Inorg. Chem. Front., 2018,5:2346-2354. doi: 10.1039/C8QI00573G

    16. [16]

      Wang W M, Yue R X, Gao Y, Wang M J, Hao S S, Shi X Y, Kang X M, Wu Z L. Large magnetocaloric effect and remarkable single-molecule-magnet behavior in triangle-assembled Ln6 complexes[J]. New J. Chem., 2019,43:16639-16646. doi: 10.1039/C9NJ03921J

    17. [17]

      Qiao N, Xin X Y, Guan X F, Zhang C X, Wang W M. Self-assembly bifunctional tetranuclear Ln2Ni2 clusters: Magnetic behavior and highly efficient converting CO2 under mild conditions[J]. Inorg. Chem., 2022,61:15098-15107. doi: 10.1021/acs.inorgchem.2c02180

    18. [18]

      Wang W M, Xin X Y, Qiao N, Wu Z L, Li L, Zou J Y. Self-assembly of octanuclear Ln(Ⅲ)-based clusters: Their large magnetocaloric effects and highly efficient conversion of CO2[J]. Dalton Trans., 2022,51:13957-13969. doi: 10.1039/D2DT01892F

    19. [19]

      Wang L, Zhang G, Kodama K. An efficient metal- and solvent-free organocatalytic system for chemical fixation of CO2 into cyclic carbonates under mild conditions[J]. Green Chem., 2016,18:1229-1233. doi: 10.1039/C5GC02697K

    20. [20]

      Castro-Osma J A, North M, Wu X. Development of a halide-free aluminum-based catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. Chem.-Eur. J., 2014,20:15005-15008. doi: 10.1002/chem.201404117

    21. [21]

      Wang W M, Qiao N, Xin X Y, Wu Z L, Cui J Z. Octanuclear Ln(Ⅲ)-based clusters assembled by a polydentate Schiff base ligand and a β-diketone co-Ligand: efficient conversion of CO2 to cyclic carbonates and large magnetocaloric effect[J]. Cryst. Growth Des., 2023,23:87-95. doi: 10.1021/acs.cgd.2c00746

    22. [22]

      Gu A L, Zhang Y X, Wu Z L, Cui H Y, Hu T D, Zhao B. Highly efficient conversion of propargylic alcohols and propargylic amines with CO2 activated by noble-metal-free catalyst Cu2O@ZIF-8[J]. Angew. Chem. Int. Ed., 2022,61e202114817.

    23. [23]

      Tamura M, Honda M, Nakagawa Y. Direct conversion of CO2 with diols, amino alcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts[J]. J. Chem. Technol. Biotechnol., 2014,89:19-33. doi: 10.1002/jctb.4209

    24. [24]

      Xiao L F, Li F W, Peng J J. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. J. Mol. Catal. A: Chem., 2006,253:265-269. doi: 10.1016/j.molcata.2006.03.047

    25. [25]

      Wang M Y, Song Q W, Ma R. Efficient conversion of carbon dioxide at atmospheric pressure to 2-oxazolidinones promoted by bifunctional Cu(Ⅱ)-substituted polyoxometalate-based ionic liquids[J]. Green Chem., 2016,18:282-287. doi: 10.1039/C5GC02311D

    26. [26]

      Hu J, Ma J, Zhu Q. Zinc(Ⅱ)-catalyzed reactions of carbon dioxide and propargylic alcohols to carbonates at room temperature[J]. Green Chem., 2016,18:382-385. doi: 10.1039/C5GC01870F

    27. [27]

      Ma R, He L N, Zhou Y B. An efficient and recyclable tetra oxo-coordinatedZinc catalyst for the cycloaddition of epoxides with carbon dioxide at atmospheric pressure[J]. Green Chem., 2016,18:226-231. doi: 10.1039/C5GC01826A

    28. [28]

      Ema T, Miyazaki Y, Taniguchi T. Robust porphyrin catalysts immobilized on biogenous iron oxide for the repetitive conversions of epoxides and CO2 into cyclic carbonates[J]. Green Chem., 2013,15:2485-2492. doi: 10.1039/c3gc41055b

    29. [29]

      Sun J, Fujita S I, Zhao F. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions[J]. Green Chem., 2004,6:613-616. doi: 10.1039/b413229g

    30. [30]

      Whiteoak C J, Kielland N, Laserna V. A powerful aluminum catalyst for the synthesis of highly functional organic carbonates[J]. J. Am. Chem. Soc., 2013,135:1228-1231. doi: 10.1021/ja311053h

    31. [31]

      Song T Q, Dong J, Yang A F, Che X J, Gao H L, Cui J Z, Zhao B. Wheel-like Ln18 cluster organic frameworks for magnetic refrigeration and conversion of CO2[J]. Inorg. Chem., 2018,57:3144-3150. doi: 10.1021/acs.inorgchem.7b03142

    32. [32]

      Dong J, Xu H, Hou S L, Wu Z L, Zhao B. Metal-organic frameworks with Tb4 clusters as nodes: Luminescent detection of chromium(Ⅵ) and chemical fixation of CO2[J]. Inorg. Chem., 2017,56:6244-6250. doi: 10.1021/acs.inorgchem.7b00323

    33. [33]

      Yang H, Gao G S, Chen W M. Self-assembly of tetranuclear 3d-4f helicates as highly efficient catalysts for CO2 cycloaddition reactions under mild conditions[J]. Dalton Trans., 2020,49:10270-10277. doi: 10.1039/D0DT01743D

    34. [34]

      Katagiri S, Tsukahara Y, Hasegawa Y, Wada Y. Energy-transfer mechanism in photoluminescent terbium(Ⅲ) complexes causing their temperature-dependence[J]. Bull. Chem. Soc. Jpn., 2007,80:1492-1503. doi: 10.1246/bcsj.80.1492

    35. [35]

      Wang W M, Wang M J, Hao S S, Shen Q Y, Wang M L, Liu Q L, Guan X F, Zhang X T, Wu Z L. 'Windmill'-shaped Ln4 (Ln =Gd and Dy) clusters: Magnetocaloric effect and single-molecule-magnet behavior[J]. New J. Chem., 2020,44:4631-4638. doi: 10.1039/C9NJ05317D

    36. [36]

      Wang W M, Zhang H X, Wang S Y, Shen H Y, Gao H L, Cui J Z, Zhao B. Ligand field affected single-molecule magnet behavior of lanthanide(Ⅲ) dinuclear complexes with an 8-hydroxyquinoline Schiff base derivative as bridging ligand[J]. Inorg. Chem., 2015,54:10610-10622. doi: 10.1021/acs.inorgchem.5b01404

    37. [37]

      Wang W M, Zhang L, Li X Z, He L Y, Wang X X, Shi Y, Wang J, Dong J, Wu Z L. Structures, fluorescence properties and magnetic properties of a series of rhombus-shaped Ln4 clusters: Magnetocaloric effect and single-molecule-magnet behavior[J]. New J. Chem., 2019,43:12941-12949. doi: 10.1039/C9NJ02872B

    38. [38]

      Wang W M, Gao Y, Yue R X, Qiao N, Wang D T, Shi Y, Zhang H, Cui J Z. Construction of a family of Ln3 clusters using multidentate Schiff base and β-diketonate ligands: Fluorescence properties, magnetocaloric effect and slow magnetic relaxation[J]. New J. Chem., 2020,44:9230-9237. doi: 10.1039/D0NJ01172J

    39. [39]

      Wang W M, Li X Z, Zhang L, Chen J L, Wang J H, Wu Z L, Cui J Z. A series of[2×2] square grid Ln4 clusters: A large magnetocaloric effect and single-molecule-magnet behavior[J]. New J. Chem., 2019,43:7419-7426. doi: 10.1039/C8NJ04454F

    40. [40]

      Yao M X, Cai L Z, Deng X W, Zhang W, Liu S J, Cai X M. Self-assembly of rare octanuclear quad(double-stranded) cluster helicates showing slow magnetic relaxation and the magnetocaloric Effect[J]. New J. Chem., 2018,42:17652-17658. doi: 10.1039/C8NJ04169E

    41. [41]

      Ma X F, Wang H L, Zhu Z H, Li B, Mo K Q, Zou H H, Liang F P. Formation of nanocomplex {Dy12} containing Dy-exclusive vertex-sharing[Dy4(μ3-OH)4] cubanes via simultaneous multi-template guided and step-by-step assembly[J]. Dalton Trans., 2019,48:11338-11344. doi: 10.1039/C9DT01454C

    42. [42]

      Dinca A S, Mindru A, Dragancea D, Tiseanu C, Shova S, Cornia S, Carrella L M, Rentschler E, Affronte M, Andruh M. Aggregation of[Ln12] clusters by the dianion of 3-formyl salicylic acid, synthesis, crystal structures, magnetic and luminescence properties[J]. Dalton Trans., 2019,48:1700-1708. doi: 10.1039/C8DT04602F

    43. [43]

      Wang H L, Ma X F, Peng J M, Zhu Z H, Li B, Zou H H, Liang F P. Tracking the stepwise formation of the dysprosium cluster (Dy10) with multiple relaxation behavior[J]. Inorg. Chem., 2019,58:9169-9174. doi: 10.1021/acs.inorgchem.9b00760

    44. [44]

      Lu J J, Montigaud V, Cador O, Wu J F, Zhao L, Li X L, Guo M, Guennic B L, Tang J K. Lanthanide(Ⅲ) hexanuclear circular helicates: Slow magnetic relaxation, toroidal arrangement of magnetic moments, and magnetocaloric effects[J]. Inorg. Chem., 2019,58:11903-11911. doi: 10.1021/acs.inorgchem.9b01068

    45. [45]

      Wu J F, Li X L, Zhao L, Guo M, Tang J K. Enhancement of magnetocaloric effect through fixation of carbon dioxide: Molecular assembly from Ln4 to Ln4 cluster pairs[J]. Inorg. Chem., 2017,56:4104-4111. doi: 10.1021/acs.inorgchem.7b00094

    46. [46]

      Li L F, Kuang W W, Li Y M, Zhu L L, Xu Y, Yang P P. A series of new octanuclear Ln8 clusters: Magnetic studies reveal a significant cryogenic magnetocaloric effect and slow magnetic relaxation[J]. New J. Chem., 2019,43:1617-1625. doi: 10.1039/C8NJ04231D

    47. [47]

      Shi Y, Tang B, Jiang X L, Jiao Y E, Xu H, Zhao B. Highly effective CS2 conversion with aziridines catalyzed by novel [Dy24] nano-cages in MOFs under mild conditions[J]. J. Mater. Chem. A, 2022,10:4889-4894. doi: 10.1039/D1TA10522A

    48. [48]

      Hou W, Wang G, Wu X J, Sun S Y, Zhao C Y, Liu W S, Pan F X. Lanthanide clusters as highly efficient catalysts regarding carbon dioxide activation[J]. New J. Chem., 2020,44:5019-5022. doi: 10.1039/C9NJ05831A

    49. [49]

      Zhang R L, Wang L, Xu C, Yang H, Chen W M, Gao G S, Liu W S. New lanthanide(Ⅲ) coordination polymers: Synthesis, structural features, and catalytic activity in CO2 fixations[J]. Dalton Trans., 2018,47:7159-7165. doi: 10.1039/C8DT01292J

    50. [50]

      Xu C, Liu Y, Wang L, Ma J X, Yang L Z, Pan F X, Kirillov A M, Liu W S. New lanthanide(Ⅲ) coordination polymers: Synthesis, structural features, and catalytic activity in CO2 fixation[J]. Dalton Trans., 2017,46:16426-16431. doi: 10.1039/C7DT03574H

    51. [51]

      Wang L, Xu C, Han Q X, Tang X L, Zhou P P, Zhang R L, Gao G S, Xu B H, Qin W W, Liu W S. Ambient chemical fixation of CO2 using a highly efficient heterometallic helicate catalyst system[J]. Chem. Commun., 2018,54:2212-2215. doi: 10.1039/C7CC09092G

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    5. [5]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    6. [6]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    7. [7]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    8. [8]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    9. [9]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    10. [10]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    11. [11]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    12. [12]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    13. [13]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    14. [14]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    15. [15]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    16. [16]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    19. [19]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    20. [20]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

Metrics
  • PDF Downloads(2)
  • Abstract views(511)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return