Citation: Ru-Yi ZHANG, Xin CHEN, Yuan-Yuan GUO, Chong LIU, Kun-Lin HUANG. Structural diversity and luminescence properties of a series of complexes based on terpyridine-4-carboxylic acid[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(5): 928-938. doi: 10.11862/CJIC.2023.047 shu

Structural diversity and luminescence properties of a series of complexes based on terpyridine-4-carboxylic acid

Figures(7)

  • A series of complexes constructed by 2,2′∶6,2″-terpyridine-4-carboxylic acid (Htpc), namely [Cr2(tpc)2 (HCOO)2(OH)2]·4H2O (1), [Ba(tpc)2(H2O)2]n (2), [Zn2(tpc)2(NO3)2]n (3), [Pb(Htpc)(NO3)2]·2H2O (4), and [Rh(Htpc)Cl3]·CH3OH·H2O (5), have been prepared under solvothermal conditions. Single crystal X-ray analysis reveals that the organic ligands took four different coordination fashions in 1-5. Complexes 1-5 show novel supramolecular networks through rich C—H…O/N hydrogen bonds and ππ contacts. The luminescence of the complexes was investigated and under 365 nm ultraviolet radiation the crystals of 2-5 displayed green, blue, purple-blue, and golden colors, respectively.
  • 加载中
    1. [1]

      Qiu T J, Liang Z B, Guo W H, Tabassum H, Gao S, Zou R Q. Metal-organic framework-based materials for energy conversion and storage[J]. ACS Energy Lett., 2020,5(2):520-532. doi: 10.1021/acsenergylett.9b02625

    2. [2]

      Han L J, Ge F Y, Sun G H, GaoX J, Zheng H G. Effective adsorption of Congo red by a MOF-based magnetic material[J]. Dalton Trans., 2019,48:4650-4656. doi: 10.1039/C9DT00813F

    3. [3]

      Yin H Q, Yin X B. Metal-organic frameworks with multiple luminescence emissions: Designs and applications[J]. Acc. Chem. Res., 2020,53(2):485-495. doi: 10.1021/acs.accounts.9b00575

    4. [4]

      Duan X D, Ren S S, Ge F Y, Zhu X K, Zhang M D, Zheng H G. MOF-derived CoNi, CoO, NiO@N-C bifunctional oxygen electrocatalysts for liquid and all-solid-state Zn-air batteries[J]. Nanoscale, 2021,13:17655-17662. doi: 10.1039/D1NR04537G

    5. [5]

      Feng L, Wang K Y, Willman J, Zhou H C. Hierarchy in metal-organic frameworks[J]. ACS Cent. Sci., 2020,6(3):359-367. doi: 10.1021/acscentsci.0c00158

    6. [6]

      Yadav S, Sharma S, Dutta S, Sharma A, Adholeya A, Sharma R K. Harnessing the untapped catalytic potential of a CoFe2O4/Mn-BDC hybrid MOF composite for obtaining a multitude of 1,4-disubstituted 1,2,3-triazole scaffolds[J]. Inorg. Chem., 2020,59(12):8334-8344. doi: 10.1021/acs.inorgchem.0c00752

    7. [7]

      Lei M Y, Ge F Y, Gao X J, Shi Z Q, Zheng H G. A water-stable Tb-MOF as a rapid, accurate, and highly sensitive ratiometric luminescent sensor for the discriminative sensing of antibiotics and D2O in H2O[J]. Inorg. Chem., 2021,60:10513-10521. doi: 10.1021/acs.inorgchem.1c01145

    8. [8]

      Li C, Li Q, Kaneti Y V, Hou D, Yamauchi Y, Mai Y Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems[J]. Chem. Soc. Rev., 2020,49:4681-4736. doi: 10.1039/D0CS00021C

    9. [9]

      Mahmoud M E, Audi H, Assoud A, Ghaddar T H, Hmadeh M. Metal-organic framework photocatalyst incorporating bis(4'-(4-carboxyphenyl)-terpyridine)ruthenium(Ⅱ) for visible-light-driven carbon dioxide reduction[J]. J. Am. Chem. Soc., 2019,141(17):7115-7121. doi: 10.1021/jacs.9b01920

    10. [10]

      Li H Z, Wang F. A zinc(Ⅱ) coordination polymer based on carboxyphenyl-terpyridine ligand with novel hydrogen-bond topology[J]. Inorg. Chim. Acta, 2020,502119351. doi: 10.1016/j.ica.2019.119351

    11. [11]

      YUAN Y N, WANG Z X, WANG Z Y, SONG Y Y, WANG Q L, YANG C. Zinc(Ⅱ) and cadmium(Ⅱ) complexes derived from 4'-(2-pyridyl)-2,2'∶6',2″-terpyridine: Crystal structures and fluorescence property[J]. Chinese J. Inorg. Chem., 2022,38(9):1878-1886.  

    12. [12]

      Wu Z L, Dong J, Ni W Y, Zhang B W, Cui J Z, Zhao B. Unique chiral interpenetrating d-f heterometallic MOFs as luminescent sensors[J]. Inorg. Chem., 2015,54(11):5266-5272. doi: 10.1021/acs.inorgchem.5b00240

    13. [13]

      CHEN X L, SHANG L, HUANG M P, TONG Y Q, ZHANG J N, XUE W N. Two complexes based on terpyridine/benzotricarboxylic acid ligands: Synthesis, structures and properties[J]. Chinese J. Inorg. Chem., 2021,37(2):340-350.  

    14. [14]

      Gomez G E, Ridenour J A, Byrne N M, Shevchenko A P, Cahill C L. Novel heterometallic uranyl-transition metal materials: Structure, topology, and solid state photoluminescence properties[J]. Inorg. Chem., 2019,58(11):7243-7254. doi: 10.1021/acs.inorgchem.9b00255

    15. [15]

      Lin Z K, Thacker N C, Sawano T, Drake T, Ji P F, Lan G X, Cao L Y, Liu S B, Wang C, Lin W B. Metal-organic layers stabilize earth-abundant metal-terpyridine diradical complexes for catalytic C—H activation[J]. Chem. Sci., 2018,9:143-151. doi: 10.1039/C7SC03537C

    16. [16]

      Hu R X, Yang J, Chen X, Zhang X, Zhang M B. Monomer, chain, layer and 3-D framework constructed by linear 4'-(4-carboxyphenyl)-2,2'∶ 6',2″-terpyridine[J]. Inorg. Chim. Acta, 2018,482:702-708. doi: 10.1016/j.ica.2018.07.006

    17. [17]

      Li X F, Wang X, Wu Y Y, Zhao X W, Li H Y, Li Y M. Four coordination polymers based on 4'-(4-carboxyphenyl)-2,2'∶6',2″-terpyridine: Syntheses, structures and properties[J]. J. Solid State Chem., 2019,269:118-124. doi: 10.1016/j.jssc.2018.09.019

    18. [18]

      Kharat A N, Bakhoda A, Zamanian S. Synthesis and structural studies of some fluorescent group Ⅻ metal complexes with a terpyridine based ligand[J]. Polyhedron, 2011,30:1134-1142. doi: 10.1016/j.poly.2011.01.024

    19. [19]

      Xi Y R, Wei W, Xu Y Q, Huang X Q, Zhang F Z, Hu C W. Coordination polymers based on substituted terpyridine ligands: Synthesis, structural diversity, and highly efficient and selective catalytic oxidation of benzylic C—H bonds[J]. Cryst. Growth Des., 2015,15:2695-2702. doi: 10.1021/acs.cgd.5b00008

    20. [20]

      Chen R L, Chen X Y, Zheng S R, Fan J, Zhang W G. Construction of Ag(Ⅰ)-Ln(Ⅲ) heterometallic coordination polymers based on binuclear Ag2(DSPT)2 (H2DSPT=4'-(2,4-disulfophenyl)-2,2'∶6'2″-terpyridine) rings and Ln(Ⅲ) dimeric molecular building blocks[J]. Cryst. Growth Des., 2013,13:4428-4434. doi: 10.1021/cg400926q

    21. [21]

      Xiong X, Zhou L Y, Cao W J, Liang J Y, Wang Y Z, Hu S Q, Yu F, Li B. Metal-organic frameworks based on halogen-bridged dinuclear-Cu-nodes as promising materials for high performance supercapacitor electrodes[J]. CrystEngComm, 2017,19:7177-7184. doi: 10.1039/C7CE01840A

    22. [22]

      Silva M R E, Auvray T, Milette B L, Franco M P, Braga A A C, Toma H E, Hanan G S. Unusual photooxidation of S-bonded mercaptopyridine in a mixed ligand ruthenium(Ⅱ) complex with terpyridine and bipyridine ligands[J]. Inorg. Chem., 2018,57:4898-4905. doi: 10.1021/acs.inorgchem.7b02965

    23. [23]

      HE C Y, YANG X Q, ZHANG Y H, JIANG S. Synthesis, structure and properties of three copper(Ⅱ) complexes based on a bifunctional ligand 2,2'∶6'2''-terpyridine-4'-carboxylic acid[J]. Chinese J. Inorg. Chem., 2021,37(12):2267-2278.  

    24. [24]

      Huo D B, Lin F F, Chen S N, Ni Y R, Wang R H, Chen H, Duan L L, Ji Y F, Zhou A J, Tong L P. Ruthenium complex-incorporated two-dimensional metal-organic frameworks for cocatalyst-free photocatalytic proton reduction from water[J]. Inorg. Chem., 2020,59(4):2379-2386. doi: 10.1021/acs.inorgchem.9b03250

    25. [25]

      Jiang S, Zhang Y H, Wang H, Zhan C L. Two Zn(Ⅱ) coordination polymers for highly selective detection of phenol based nitroaromatics and removal of water soluble organic dyes[J]. J. Solid State Chem., 2020,289121481. doi: 10.1016/j.jssc.2020.121481

    26. [26]

      Constable E C, Dunphy E L, Housecroft C E, Neuburger M, Schaffner S, Batten F S S R. Expanded ligands: Bis(2,2'∶6', 2''-terpyridine carboxylic acid)ruthenium(Ⅱ) complexes as metallosupramolecular analogues of dicarboxylic acids[J]. Dalton Trans., 2007:4323-4332.

    27. [27]

      Zhang N, Yang J, Hu R X, Zhang M B. Syntheses and structures of terpyridine-metal complexes[J]. Z. Anorg. Allg. Chem., 2013,639(1):197-202. doi: 10.1002/zaac.201200339

    28. [28]

      Kobayashi A, Oizumi S, Shigeta Y, Kato M Y M. Proton-switchable vapochromic behaviour of a platinum(Ⅱ)-carboxy-terpyridine complex[J]. Dalton Trans., 2016,45:17485-17494. doi: 10.1039/C6DT03189G

    29. [29]

      Fedoseev A M, Grigoriev M S, Charushnikova I A, Budantseva N A, Stanetskaya N M, Tyurin V S. Neptunium(Ⅴ) isothiocyanate complexes with 4'-aryl-substituted 2,2'∶6',2″-terpyridines and N, N-dimethylacetamide as molecular ligands[J]. Inorg. Chem., 2021,60(3):1857-1868. doi: 10.1021/acs.inorgchem.0c03315

    30. [30]

      Li H S, Zhang S M, Ye P, Sun T, Wang K, Zhang X Q, Li Y. Syntheses, crystal structures and photoluminescent properties of dinuclear and tetranuclear zinc complexes with 1,4-bis(2,2'∶6',2″-terpyridine-4'-yl) benzene[J]. J. Coord. Chem., 2021,74(4/5/6):927-941.

    31. [31]

      Dickenson J C, Haley M E, Hyde J T, Reid Z M, Tarring T J, Iovan D A, Harrison D P. Fine-tuning metal and ligand-centered redox potentials of homoleptic bis-terpyridine complexes with 4'-aryl substituents[J]. Inorg. Chem., 2021,60(13):9956-9969. doi: 10.1021/acs.inorgchem.1c01233

    32. [32]

      Yang X Q, Liu H Q, Hu B, Luo X B, Zeng G S, Huang W. A rare case of Ag coordination polymer having five-coordinate planar pentagon metal center[J]. Inorg. Chem. Commun., 2021,125108410. doi: 10.1016/j.inoche.2020.108410

    33. [33]

      Thuéry P, Harrowfield J. Uranyl ion complexes with 2,2'∶6',2″-terpyridine-4'-carboxylate. Interpenetration of networks involving "expanded ligands"[J]. CrystEngComm, 2021,23:7305-7313. doi: 10.1039/D1CE01215K

    34. [34]

      Qian J F, Lu H J, Zheng Z F, Xu M M, Qian Y, Zhang Z H, Wang J Q, He M Y, Lin J. Achieving colour tuneable and white-light luminescence in a large family of dual-emission lanthanide coordination polymers[J]. Dalton Trans., 2021,50:14325-14331. doi: 10.1039/D1DT01618K

    35. [35]

      Sheldrick G M. SHELXL 97, Program for the solution of crystal structure. University of Göttingen, Germany, 1997.

    36. [36]

      Sheldrick G M. SHELXL 97, Program for crystal structure refinement. University of Göttingen, Germany, 1997.

    37. [37]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    38. [38]

      Vishnoi P, Kaleeswaran D, Kalita A C, Murugavel R. Dependence of the SBU length on the size of metal ions in alkaline earth MOFs derived from a flexible C3-symmetric tricarboxylic acid[J]. CrystEngComm, 2016,18:9130-9138. doi: 10.1039/C6CE01821A

    39. [39]

      Fard Z H, Kalinovskyy Y, Spasyuk D M, Blight B A, Shimizu G K H. Alkaline-earth phosphonate MOFs with reversible hydration-dependent fluorescence[J]. Chem. Commun., 2016,52:12865-12868. doi: 10.1039/C6CC06490F

    40. [40]

      Xiao D R, Chen H Y, Sun D Z, He J H, Yan S W, Yang J, Wang X, Yuan R, Wang E B. Guest-induced expanding and shrinking porous modulation based on interdigitated metal-organic frameworks constructed by 4, 4'-sulfonyldibenzoate and barium ions[J]. CrystEngComm, 2012,14:2849-2858. doi: 10.1039/c2ce06428f

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    5. [5]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    8. [8]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    9. [9]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    10. [10]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    13. [13]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    16. [16]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    17. [17]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    18. [18]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    19. [19]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    20. [20]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

Metrics
  • PDF Downloads(3)
  • Abstract views(576)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return