Citation: Jia-Xuan WANG, Liang-Qing LI, Lei MA, Jin-Yin LÜ, Jian-Hua YANG, Jin-Ming LU. Preparation of mordenite membrane for pervaporation dehydration of acetic acid by a two-stage varying temperature crystallization hydrothermal method[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 91-97. doi: 10.11862/CJIC.2022.270 shu

Preparation of mordenite membrane for pervaporation dehydration of acetic acid by a two-stage varying temperature crystallization hydrothermal method

  • Corresponding author: Jian-Hua YANG, yjianhua@dlut.edu.cn
  • Received Date: 9 June 2022
    Revised Date: 11 November 2022

Figures(4)

  • Pervaporation (PV) has been favorably adopted in the industrial dehydration of various organic mixtures. In this work, mordenite membrane (MOR membrane) for PV dehydration of acetic acid was prepared by a two-stage varying temperature crystallization hydrothermal method from dilute synthesis solution with a high molar ratio of water to silica (nH2O/nSiO2). The effects of varying temperature crystallization time, nH2O/nSiO2, and the amount of fluorine ion on the morphology and separation performance of MOR membrane were investigated. The results showed that the above conditions have significant effects on the morphology, crystallinity, membrane thickness, and PV performance of the MOR membranes. The best performance MOR membrane was prepared at first-stage temperature (150 ℃, 18 h) and second-stage temperature (120 ℃, 6 h) with nH2O/nSiO2=60. The permeation flux and separation coefficient of the mass fraction of 50% acetic acid aqueous solution were 1.45 kg·m-2·h-1 and 1 008, respectively.
  • 加载中
    1. [1]

      Lei Z G, Li C Y, Li Y X, Chen B H. Separation of acetic acid and water by complex extractive distillation[J]. Sep. Purif. Technol., 2004,36(2):131-138. doi: 10.1016/S1383-5866(03)00208-9

    2. [2]

      Wang X P. Modified alginate composite membranes for the dehydration of acetic acid[J]. J. Membr. Sci., 2000,170(1):71-79. doi: 10.1016/S0376-7388(99)00361-0

    3. [3]

      Jonquières A, Clément R, Lochon P, Néel J, Dresch M, Chrétien B. Industrial state-of-the-art of pervaporation and vapour permeation in the western countries[J]. J. Membr. Sci., 2002,206(1/2):87-117.

    4. [4]

      Bowen T C, Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes[J]. J. Membr. Sci., 2004,245(1/2):1-33.

    5. [5]

      Smitha B, Suhanya D, Sridhar S, Ramakrishna M. Separation of organic- organic mixtures by pervaporation-A review[J]. J. Membr. Sci., 2004,241(1):1-21. doi: 10.1016/j.memsci.2004.03.042

    6. [6]

      Wee S L, Tye C T, Bhatia S. Membrane separation process-pervaporation through zeolite membrane[J]. Sep. Purif. Technol., 2008,63(3):500-516. doi: 10.1016/j.seppur.2008.07.010

    7. [7]

      Sander U, Soukup P. Design and operation of a pervaporation plant for ethanol dehydration[J]. J. Membr. Sci., 1988,36:463-475. doi: 10.1016/0376-7388(88)80036-X

    8. [8]

      WANG J Q, YANG J H, CHEN Z, YIN D H. Research advances in zeolite membranes for pervaporation dehydration of organics in harsh environment[J]. Membrane Science and Technology, 2011,31(3):118-126. doi: 10.3969/j.issn.1007-8924.2011.03.018

    9. [9]

      Raza W, Wang J X, Yang J H, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid[J]. Sep. Purif. Technol., 2021,262118338. doi: 10.1016/j.seppur.2021.118338

    10. [10]

      Li Y S, Zhang X F, Wang J Q. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis[J]. Sep. Purif. Technol., 2001,25(1/2/3):459-466.

    11. [11]

      Kong C L, Lu J M, Yang J H, Wang J Q. Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varyingtemperature in situ synthesis[J]. J. Membr. Sci., 2006,285(1/2):258-264.

    12. [12]

      Zhu M H, Xia S L, Hua X M, Feng Z J, Hu N, Zhang F, Kumakiri I, Lu Z H, Chen X S, Kita H. Rapid preparation of acid-stable and high dehydration performance mordenite membranes[J]. Ind. Eng. Chem. Res., 2014,53(49):19168-19174. doi: 10.1021/ie501248y

    13. [13]

      Li L Q, Yang J H, Li J J, Han P, Wang J X, Zhao Y, Wang J Q, Lu J M, Yin D H, Zhang Y. Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwaveassisted heating[J]. J. Membr. Sci., 2016,512:83-92. doi: 10.1016/j.memsci.2016.03.056

    14. [14]

      Wang S, Li L Q, Li J J, Wang J X, Pan E Z, Lu J M, Zhan Y, Yang J H. Sustainable synthesis of highly water-selective ZSM-5 membrane by wet gel conversion[J]. J. Membr. Sci., 2021,635119431. doi: 10.1016/j.memsci.2021.119431

    15. [15]

      Wang J X, Wang L, Li L Q, Li J J, Raza W, Lu J M, Yang J H. A green synthesis of MOR zeolite membranes by wet gel conversion for dehydration of water-acetic acid mixtures[J]. Sep. Purif. Technol., 2022,286120311. doi: 10.1016/j.seppur.2021.120311

    16. [16]

      Matsukata M, Sawamura K I, Shirai T, Takada M, Sekine Y, Kikuchi E. Controlled growth for synthesizing a compact mordenite membrane[J]. J. Membr. Sci., 2008,316(1/2):18-27.

    17. [17]

      Zhu M H, Hua X M, Liu Y S, Hu H L, Li Y Q, Hu N, Kumakiri I, Chen X S, Kita H. Influences of synthesis parameters on preparation of acid-stable and reproducible mordenite membrane[J]. Ind. Eng. Chem. Res., 2016,55(47):12268-12275. doi: 10.1021/acs.iecr.6b02125

    18. [18]

      Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time[J]. Chem. Rev., 2003,103(3):663-702. doi: 10.1021/cr020060i

    19. [19]

      Lim I H, Schrader W, Schüth F. The formation of zeolites from solution-Analysis by mass spectrometry[J]. Microporous Mesoporous Mater., 2013,166:20-36. doi: 10.1016/j.micromeso.2012.04.059

    20. [20]

      Chapman P D, Oliveira T, Livingston A G, Li K. Membranes for the dehydration of solvents by pervaporation[J]. J. Membr. Sci., 2008,318(1/ 2):5-37.

    21. [21]

      Li G, Kikuchi E, Matsukata M. A study on the pervaporation of wateracetic acid mixtures through ZSM-5 zeolite membranes[J]. J. Membr. Sci., 2003,218(1/2):185-194.

    22. [22]

      Li G, Kikuchi E, Matsukata M. Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane[J]. Sep. Purif. Technol., 2003,32(1/2/3):199-206.

    23. [23]

      Tanaka K, Yoshikawa R, Ying C, Kita H, Okamoto K I. Application of zeolite membranes to esterification reactions[J]. Catal. Today, 2001,67(1/2/3):121-125.

    24. [24]

      Zhu M H, Kumakiri I, Tanaka K, Kita H. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Micropo⁃ rous Mesoporous Mater., 2013,181:47-53. doi: 10.1016/j.micromeso.2012.12.044

    25. [25]

      Tsuru T, Shibata T, Wang J, Lee H R, Kanezashi M, Yoshioka T. Pervaporation of acetic acid aqueous solutions by organosilica membranes[J]. J. Membr. Sci., 2012,421:25-31.

    26. [26]

      Sato K, Sugimoto K, Kyotani T, Shimotsuma N, Kurata T. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution[J]. J. Membr. Sci., 2011,385:20-29.

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(5)
  • Abstract views(896)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return