Citation: Kai-Xuan XU, Yu-Long KANG, Hong-Bin HE, Xiao-Ming GAO, Chen-Yu ZHAO, Rui-Yang REN. Nitrogen-vacancies g-C3N5 modified S-doping perylene diimide for the enhanced visible photo self-Fenton reaction for phenol oxidation coupled with Cr(Ⅵ) reduction[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(1): 32-44. doi: 10.11862/CJIC.2022.264 shu

Nitrogen-vacancies g-C3N5 modified S-doping perylene diimide for the enhanced visible photo self-Fenton reaction for phenol oxidation coupled with Cr(Ⅵ) reduction

  • Corresponding author: Xiao-Ming GAO, ydgaoxm@126.com
  • Received Date: 31 May 2022
    Revised Date: 5 October 2022

Figures(11)

  • Nitrogen-vacancies g-C3N5 (NVs) modified S-doping perylene diimide (S-PDI) organic compound semiconductor was prepared by electrostatic self-assembly. The nitrogen vacancies provided rich active sites on the surface of g-C3N5. The amide in the preparation of S-PDI enhanced the intermolecular interaction between S-PDI and NVs. The reduction rate of Cr(Ⅵ) over 30% NVs/S-PDI (with NVs mass fraction of 30%) was 79.96%, and the degradation rate of phenol was 74.40%. Furthermore, In the process of synergistic oxidation of phenol and reduction of Cr(Ⅵ) over 30% NVs/S-PDI, the reduction rate of Cr(Ⅵ) was 92.83%, and the degradation rate of phenol was 93.89%. Carboxylic acid and propanol, the products of oxidative degradation of phenol could be used as sacrificial agents of Cr(Ⅵ), which promoted the reduction of Cr(Ⅵ). The reduction of Cr(Ⅵ) enhanced the oxidative degradation of phenol. Accordingly, the carboxylic acid and propanol were finally oxidized to CO2 and H2O. Using the reduction performance of the conduction band and the oxidation performance of the valence band, the spatial separation of electrons and holes could be achieved by constructing heterojunction NVs/S-PDI, which could synergistically strengthen the oxidation half-reaction and reduction half-reaction in the photocatalytic process, simultaneously improve the photocatalytic oxidation-reduction performance. At the same time, under the illumination of visible light, H2O2 and Cr(Ⅵ)were generated in the phenol aqueous solution. A photo self-Fenton reaction process was formed by the electrons, H2O2 and Cr(Ⅵ), which further promoted the oxidative degradation of phenol and the reduction and removal of Cr(Ⅵ).
  • 加载中
    1. [1]

      Liang L, Shi L, Wang F X, Wang H H, Yan P Q, Cong Y F, Yao L Z, Yang Z X, Qi W. g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: Boosting effect of nitrogen vacancy[J]. Appl. Catal. A-Gen., 2020,599117618. doi: 10.1016/j.apcata.2020.117618

    2. [2]

      Kong L R, Mu X J, Fan X M, Li R, Zhang Y T, Song P, Ma F C, Sun M T. Site-selected N-vacancy of g-C3N4 for photocatalysis and physical mechanism[J]. Appl. Mater. Today, 2018,13:329-338. doi: 10.1016/j.apmt.2018.10.003

    3. [3]

      Ei Fakir A A, Anfar Z, Amedlous A, Zbair M, Hafidi Z, Ei Achouri M, Jada A, Ei Alem N. Engineering of new hydrogel beads based conducting polymers: Metal-free catalysis for highly organic pollutants degradation[J]. Appl. Catal. B-Environ., 2021,286119948. doi: 10.1016/j.apcatb.2021.119948

    4. [4]

      Ragab E, Shaban M, Khalek A A, Mohamed F. Design and characterization of PANI/starch/Fe2O3 BiO composite for wastewater remediation[J]. Int. J. Biol. Macromol., 2021,181:301-312. doi: 10.1016/j.ijbiomac.2021.03.043

    5. [5]

      Gao X M, Gao K L, Li X B, Shang Y Y, Fu F. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants[J]. Catal. Sci. Technol., 2020,10(2):372-381. doi: 10.1039/C9CY01722D

    6. [6]

      Gong Y B, Chang K, Chen C, Han M M, Zhan X J, Min J, Jiao X C, Li Q Q, Li Z. Pyrene-fused PDI based ternary solar cells: High power conversion efficiency over 10%, and improved device thermal stability[J]. Mater. Chem. Front., 2019,3(1):93-102. doi: 10.1039/C8QM00486B

    7. [7]

      Cai Z Q, Huang Y N, Ji H D, Liu W, Fu J, Sun X B. Type-Ⅱ surface heterojunction of bismuth-rich Bi4O 5Br2 on nitrogen-rich g-C3N5 nanosheets for efficient photocatalytic degradation of antibiotics[J]. Sep. Purif. Technol., 2022,280119772. doi: 10.1016/j.seppur.2021.119772

    8. [8]

      Vadivel S, Hariganesh S, Paul B, Rajendran S, Habibi-Yangjeh A, Maruthamani D, Kumaravel M. Synthesis of novel AgCl loaded g-C3N5 with ultrahigh activity as visible light photocatalyst for pollutants degradation[J]. Chem. Phys. Lett., 2020,738136862. doi: 10.1016/j.cplett.2019.136862

    9. [9]

      Saravanakumar K, Maheskumar V, Yea Y, Yoon Y, Muthuraj V, Park C M. 2D/2D nitrogen-rich graphitic carbon nitride coupled Bi2WO6 S-scheme heterojunction for boosting photodegradation of tetracycline: Influencing factors, intermediates, and insights into the mechanism[J]. Compos. Part B-Eng., 2022,234109726. doi: 10.1016/j.compositesb.2022.109726

    10. [10]

      Zhang Z J, Chen X J, Zhang H J, Liu W X, Zhu W, Zhu Y F. A highly crystalline perylene imide polymer with the robust built-in electric field for efficient photocatalytic water oxidation[J]. Adv. Mater., 2020,32(32)1907746. doi: 10.1002/adma.201907746

    11. [11]

      Usta H, Facchetti A, Marks T. n-Channel semiconductor materials design for organic complementary circuits[J]. Acc. Chem. Res., 2011,44:501-510. doi: 10.1021/ar200006r

    12. [12]

      Wang R, Wu J, Mao X, Wang J M, Liu Q Z, Qi Y F, He P, Qi X M, Liu G L, Guan Y. Bi spheres decorated g-C3N4/BiOI Z-scheme het-erojunction with SPR effect for efficient photocatalytic removal elemental mercury[J]. Appl. Surf. Sci., 2021,556149804. doi: 10.1016/j.apsusc.2021.149804

    13. [13]

      Li M X, Lu Q J, Liu M L, Yin P, Wu C Y, Li H T., Zhang Y Y, Yao S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N 5/BiOBr for the photoelectro-chemical nitrogen reduction[J]. ACS Appl. Mater. Interfaces, 2020,12(34):38266-38274. doi: 10.1021/acsami.0c11894

    14. [14]

      Luo J, Fan C Z, Tang L, Liu Y N, Gong Z X, Wu T S, Zhen X L, Feng C Y, Feng H P, Wang L L, Xu L, Yan M. Reveal Brønsted-Evans-Polanyi relation and attack mechanisms of reactive oxygen species for photocatalytic H2O2 production[J]. Appl. Catal. B-Environ., 2022,301120757. doi: 10.1016/j.apcatb.2021.120757

    15. [15]

      Li H Y, Wang C, Bai X J, Wang X Y, Sun B X, Li D, Zhao L C, Zong R L, Hao D. In-plane polarization induced by the hydrogen bonding and π-π stacking of functionalized PDI supramolecules for the efficient photocatalytic degradation of organic pollutants[J]. Mater. Chem. Front., 2020,4(9):2673-2687. doi: 10.1039/D0QM00349B

    16. [16]

      Hu C, Lin Y H, Yoshida M, Ashimura S. Influence of phosphorus doping on triazole-based g-C3N5 nanosheets for enhanced photoelec-trochemical and photocatalytic performance[J]. ACS Appl. Mater. Interfaces, 2021,13(21):24907-24915. doi: 10.1021/acsami.1c05162

    17. [17]

      Wang L B, Li M H, Zhang Q, Li F Y, Xu L. Constructing electron transfer pathways and active centers over W18O49 nanowires by doping Fe3+ and incorporating g-C3N5 for enhanced photocatalytic nitro-gen fixation[J]. Inorg. Chem. Front., 2021,8(14):3566-3575. doi: 10.1039/D1QI00503K

    18. [18]

      Zhang Y Z, Shi J W, Huang Z X, Guan X J, Zong S C, Cheng C, Zheng B T, Guo L J. Synchronous construction of CoS 2 in-situ load-ing and doping for g-C3N4: Enhanced photocatalytic H2-evolution activity and mechanism insight[J]. Chem. Eng. J., 2020,401126135. doi: 10.1016/j.cej.2020.126135

    19. [19]

      LI X B, LIU J Y, HUANG J T, HE C Z, FENG Z J, CHEN Z, WAN L Y, DENG F. All organic S-scheme heterojunction PDI/S-g-C3N4 photocatalyst with enhanced photocatalytic performance[J]. Acta Phys.-Chim. Sin., 2021,37(6)2010030.  

    20. [20]

      Jiang R R, Lu G H, Nkoom M, Yan Z H, Wu D H, Liu J C, Dang T J. Mineralization and toxicity reduction of the benzophenone-1 using 2D/2D Cu2WS 4/BiOCl Z-scheme system: Simultaneously improved visible-light absorption and charge transfer efficiency[J]. Chem. Eng. J., 2020,400125913. doi: 10.1016/j.cej.2020.125913

    21. [21]

      Li K, Cai W, Zhang Z C, Xie H F, Zhong Q, Qu H X. Boron doped C3N5 for photocatalytic nitrogen fixation to ammonia: The key role of boron in nitrogen activation and mechanism[J]. Chem. Eng. J., 2022,435135017. doi: 10.1016/j.cej.2022.135017

    22. [22]

      Al-Hamdi A M, Sillanpää M, Bora T, Dutta J. Efficient photocatalytic degradation of phenol in aqueous solution by SnO2: Sb nanoparticles[J]. Appl. Surf. Sci., 2016,370:229-236. doi: 10.1016/j.apsusc.2016.02.123

    23. [23]

      Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K. Oxysulfide Sm 2Ti2S 2O 5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤650 nm)[J]. J. Am. Chem. Soc., 2002,124:13547-13553. doi: 10.1021/ja0269643

    24. [24]

      Zhang H X, Nengzi L C, Wang Z J, Zhang X Y, Li B, Cheng X W. Construction of Bi2O3/CuNiFe LDHs composite and its enhanced photocatalytic degradation of lomefloxacin with persulfate under simulated sunlight[J]. J. Hazard. Mater., 2020,383121236. doi: 10.1016/j.jhazmat.2019.121236

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(24)
  • Abstract views(1044)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return