Citation: De-Peng DENG, Ming-Hua CHEN, Yuan-Dong LIU, Bing-Fei QIAN, Wei-Min XIA, Jun-Ming YI. Crystal Structure of Four CyB5Q[5]-Ca Complexes: The Different Coordination States in Different Anionic Environments[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(10): 1927-1938. doi: 10.11862/CJIC.2022.214 shu

Crystal Structure of Four CyB5Q[5]-Ca Complexes: The Different Coordination States in Different Anionic Environments

  • Corresponding author: Ming-Hua CHEN, gui_zhou_chen@163.com
  • Received Date: 9 December 2021
    Revised Date: 10 July 2022

Figures(14)

  • Four CyB5Q[5]-Ca complexes (1-4) have been synthesized by the new member of the cucurbituril family (CyB5Q[5]) and calcium ions in different anionic media. Their structures have been characterized by X-ray single-crystal diffraction. Their crystal structures show that complexes of different coordination types are generated in different environments of Cl-, [ZnCl4]2-, [ZnCl4]2-+ClO4-, and ClO4-, respectively. The coordination number of complexes 1, 2, 3, and 4 are 6, 8, 7, and 6, respectively.
  • 加载中
    1. [1]

      Ni X L, Lin J X, Zheng Y Y, Wu W S, Zhang Y Q, Xue S F, Zhu Q J, Tao Z, Day A I. Supramolecular Bracelets and Interlocking Rings Elaborated through the Interrelationship of Neighboring Chemical Environments of Alkyl-Substitution on Cucurbit[5]uril[J]. Cryst. Growth Des., 2008,9:3446-3450.

    2. [2]

      Andrienko I V, Kovalenko E A, Karmadonova I E, Plyusnin P E, Samsonenko D G, Fedin V P. Zinc and Cobalt Aqua Complexes with Cucurbit[6]uril: Syntheses and Crystal Structures[J]. Russ. J. Coord. Chem., 2019,45:433-438. doi: 10.1134/S1070328419060010

    3. [3]

      Ni X L, Xiao X, Cong H, Lang L L, Chen K, Chen X J, Ji N N, Zhu Q J, Xue S F, Tao Z. Cucurbit[n]uril - based Coordination Chemistry: From Simple Coordination Complexes to Novel Poly-dimensional Coordination Polymers[J]. Chem. Soc. Rev., 2013,42:9480-9508. doi: 10.1039/c3cs60261c

    4. [4]

      Cui X W, Zhao W X, Chen K, Ni X L, Zhang Y Q, Tao Z. Outer Surface Interactions of Cucurbit[6]uril Triggered Supramolecular Three Dimensional Polycatenanes[J]. Chem. Eur. J., 2017,23:2759-2763. doi: 10.1002/chem.201605045

    5. [5]

      Isaacs L. Stimuli Responsive Systems Constructed Using Cucurbit[n] uril-Type Molecular Containers[J]. Acc. Chem. Res., 2014,47:2052-2062. doi: 10.1021/ar500075g

    6. [6]

      Danylyuk O, Worzakowska M, Osypiuk-Tomasik J, Sashuk V, Kedra-Krolik K. Solution - Mediated and Single - Crystal to Single Crystal Transformations of Cucurbit[6]uril Host-Guest Complexes with Dopamine[J]. CrystEngComm, 2020,22:634-638. doi: 10.1039/C9CE01743G

    7. [7]

      Danylyuk O, Butkiewicz H, Sashuk V. Host - Guest Complexes of Cucurbit[6]uril with the Trypanocide Drug Diminazene and Its Degradation Product 4-Aminobenzamidine[J]. CrystEngComm, 2016,18:4905-4908. doi: 10.1039/C6CE00257A

    8. [8]

      Xia Y, Wang C Z, Tian M K, Tao Z, Ni X L, Prior T J, Redshaw C. Host - Guest Interaction of Cucurbit[8]uril with N-(3 - Aminopropyl) cyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex[J]. Molecules, 2018,23175181.

    9. [9]

      Wu F, Wu L H, Xiao X, ZhangY Q, Xue S F, Tao Z, Day A I. Locating the Cyclopentano Cousins of the Cucurbit[n]uril Family[J]. J. Org. Chem., 2012,77:606-611. doi: 10.1021/jo2021778

    10. [10]

      Vinciguerra B, Zavalij P Y, Isaacs L. Synthesis and Recognition Properties of Cucurbit[8]uril Derivatives[J]. Org. Lett., 2015,17:5068-5071. doi: 10.1021/acs.orglett.5b02558

    11. [11]

      Hui P, Zhao S J, Deng X Y, Lin R L, Bian B, Tao Z, Xiao X. Selective Recognition and Determination of Phenylalanine by a Fluorescent Probe Based on Cucurbit[8]uril and Palmatine[J]. Anal. Chim. Acta, 2020,1104:164-171. doi: 10.1016/j.aca.2020.01.007

    12. [12]

      Chang Y X, Duan X C, Zhang X M, Liu F, Du L M. A New Fluorometric Method for the Determination of Oxaliplatin Based on Cucurbit[7]uril Supramolecular Interaction[J]. Aust. J. Chem., 2017,70:677-682. doi: 10.1071/CH16398

    13. [13]

      Wang J, Huang Z Z, Ma X, Tian H. Aqueous Phase Visible-Light-Excited Organic Room - Temperature Phosphorescence via Cucurbit[8]uril-Mediated Supramolecular Assembling[J]. Angew. Chem. Int. Ed., 2020,59:9928-9933. doi: 10.1002/anie.201914513

    14. [14]

      Wu H, Chen H, Tang B H, Kang Y T, Xu J F, Zhang X. Host-Guest Interactions between Oxaliplatin and Cucurbit[7]uril/Cucurbit[7]uril Derivatives under Pseudo-Physiological Conditions[J]. Langmuir, 2020,36:1235-1240. doi: 10.1021/acs.langmuir.9b03325

    15. [15]

      Chen R R, Cao M N, Wang J Y, Liao H F, Cao R. Decamethyl-Cucurbit[5]uril Based Supramolecular Assemblies as Efficient Electrocatalysts for the Oxygen Reduction Reaction[J]. Chem. Commun., 2019,55:11687-11690. doi: 10.1039/C9CC05899K

    16. [16]

      Sundararajan M, Park B, Baik M H. Regioselective Oxidation of C—H Bonds in Unactivated Alkanes by a Vanadium Superoxo Catalyst Bound to a Supramolecular Host[J]. Inorg. Chem., 2019,58:16250-16255. doi: 10.1021/acs.inorgchem.9b02803

    17. [17]

      Wang C Z, Zhao W X, Zhang Y Q, Xue S F, Zhu Q J, Tao Z. A Supramolecular Assembly of Methyl Substituted Cucurbit[5]uril and Its Potential Applications in Selective Absorption[J]. RSC Adv., 2015,5:17354-17357. doi: 10.1039/C4RA16602G

    18. [18]

      Luis E T, Day A I, Konig B, Beves J E. Photophysical Activity and Host - Guest Behavior of Ruthenium Polypyridyl Catalysts Encapsulated in Cucurbit[10]uril[J]. Inorg. Chem., 2020,59:9135-9142. doi: 10.1021/acs.inorgchem.0c00986

    19. [19]

      Ni X L, Xiao X, Cong H, Zhu Q J, Xue S F, Tao Z. Self-Assemblies Based on the"Outer-Surface Interactions"of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials[J]. Acc. Chem. Res., 2014,47:1386-1395. doi: 10.1021/ar5000133

    20. [20]

      Stanley P M, Haimerl J, Thomas C, Urstoeger A, Schuster M, Shustova N B, Casini A, Rieger B, Warnan J, Fischer R A. Host-Guest Interactions in Metal-Organic Framework Isoreticular Series for Molecular Photocatalytic CO2 Reduction[J]. Angew. Chem. Int. Ed., 2021,60:17854-17860. doi: 10.1002/anie.202102729

    21. [21]

      Zhao Y, Mandadapu V, Iranmanesh H, Beves J E, Day A I. The Inheritance Angle Adeterminant for the Number of Members in the Substituted Cucurbit[n]uril Family[J]. Org. Lett., 2017,19:4034-4037. doi: 10.1021/acs.orglett.7b01786

    22. [22]

      Chen M H, Lv N X, Zhao W W, Day A I. The Cyclobutanocucurbit[58]uril Family: Electronegative Cavities in Contrast to Classical Cucurbituril while the Electropositive Outer Surface Acts as a Crystal Packing Driver[J]. Molecules, 2021,26:7343-7354. doi: 10.3390/molecules26237343

    23. [23]

      Zhang S, Grimm L, Miskolczy Z, Biczok L, Biedermann F, Nau W M. Binding Affinities of Cucurbit[n]urils with Cations[J]. Chem. Commun., 2019,55:14131-14134. doi: 10.1039/C9CC07687E

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(4)
  • Abstract views(479)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return