Citation: Jun-Die ZHANG, Xiu-Juan JIANG, Zhi-Yin XIAO, Li-Mei CHEN, Xue-Mei WANG, Xiao-Ming LIU. Preventing CO-Releasing Systems from Forming Precipitates and Tuning CO-Releasing Rate via Ligand Exchange Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1593-1600. doi: 10.11862/CJIC.2022.151 shu

Preventing CO-Releasing Systems from Forming Precipitates and Tuning CO-Releasing Rate via Ligand Exchange Reaction

Figures(6)

  • In this work, three water-soluble compounds (tiopronin, cysteamine, and mercaptoglycerol) which contain a thiol group have been used to initiate CO - release from a diiron hexacarbonyl complex [Fe2(μ-SCH2CH(OH)CH2 (OH))2(CO)6] (1). To overcome forming precipitates during the CO-releasing process, we investigated using ethylene- diaminetetraacetic acid (EDTA) as the agent to solubilize products derived from the decomposition. Our results sug- gest that EDTA not only successfully prevents the CO-releasing system from forming precipitates, but also synergis- tically facilitates the CO-release from complex 1. Despite the fact that the chosen ligands possess a thiol functional group, their behaviors in promoting the CO-release from complex 1 are rather different, which can be exploited to tune the CO-releasing rate in potential applications.
  • 加载中
    1. [1]

      Marks G S, Brien J F, Nakatsu K, McLaughlin B E. Does Carbon Monoxide Have a Physiological Function?[J]. Trends Pharmacol. Sci., 1991,12:185-188. doi: 10.1016/0165-6147(91)90544-3

    2. [2]

      Mann B E, Motterlini R. CO and NO in Medicine[J]. Chem. Commun., 2007:4197-4208.  

    3. [3]

      Mann B E. Carbon Monoxide: An Essential Signalling Molecule[J]. Top. Organomet. Chem., 2010,32:247-285.  

    4. [4]

      Johnson T R, Mann B E, Clark J E, Foresti R, Green C J, Motterlini R. Metal Carbonyls: A New Class of Pharmaceuticals?[J]. Angew. Chem. Int. Ed., 2003,42(32):3722-3729. doi: 10.1002/anie.200301634

    5. [5]

      Gonzales M A, Mascharak P K. Photoactive Metal Carbonyl Complexes as Potential Agents for Targeted CO Delivery[J]. J. Inorg. Biochem., 2014,133:127-135. doi: 10.1016/j.jinorgbio.2013.10.015

    6. [6]

      Motterlini R. Heme Oxygenase-1-Derived Carbon Monoxide Contributes to the Suppression of Acute Hypertensive Responses In Vivo[J]. Circ. Res., 1998,83(5):568-577. doi: 10.1161/01.RES.83.5.568

    7. [7]

      Kohmoto J, Nakao A, Kaizu T, Tsung A, Ikeda A, Tomiyama K, Bilhar T R, Choi A M K, Murase N, McCurry K R. Low-Dose Carbon Monoxide Inhalation Prevents Ischemia/Reperfusion Injury of Transplanted Rat Lung Grafts[J]. Surgery., 2006,140(2):179-185. doi: 10.1016/j.surg.2006.03.004

    8. [8]

      Li Volti G, Rodella L F, Di Giacomo C, Rezzani R, Bianchi R, Borsani E, Gazzolo D, Motterlini R. Role of Carbon Monoxide and Biliverdin in Renal Ischemia/Reperfusion Injury[J]. Nephron Exp. Nephrol., 2006,104(4):E135-E139. doi: 10.1159/000094964

    9. [9]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon Monoxide-Releasing Mole Cules-Characterization of Biochemical and Vascular Activities[J]. Circ. Res., 2002,90(2):E17-E24.  

    10. [10]

      Motterlini R, Otterbein L E. The Therapeutic Potential of Carbon Monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228

    11. [11]

      Romao C C, Blaettler W A, Seixas J D, Bernardes G J L. Developing Drug Molecules for Therapy with Carbon Monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583. doi: 10.1039/c2cs15317c

    12. [12]

      Schatzschneider U. Novel Lead Structures and Activation Mechanisms for CO-Releasing Molecules (CORMs)[J]. Brit. J. Pharmacol., 2015,172(6):1638-1650. doi: 10.1111/bph.12688

    13. [13]

      Fairlamb I J S, Lynam J M. Advances in Bioorganometallic Chemistry. Amsterdam: Elsevier, 2019: 137-154

    14. [14]

      LI Y, WANG X, XIE X L, ZHANG J, TANG B. Progress in Organic Fluorescent Probes and Photocontrolled Releasers for Carbon Monoxide[J]. Acta Chim. Sinica, 2021,79(1):36-44.  

    15. [15]

      Faizan M, Muhammad N, Niazi K U K, Hu Y X, Wang Y Y, Wu Y, Sun H M, Liu R X, Dong W S, Zhang W Q, Gao Z W. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity are the Part of Therapy[J]. Materials, 2019,12(10)1643. doi: 10.3390/ma12101643

    16. [16]

      Ferrandiz M L, Maicas N, Garcia-Arnandis I, Terencio Mx C, Motterlini R, Devesa I, Joosten L A, van den Berg W B, Alcaraz M J. Treatment with a CO-Releasing Molecule (CORM-3) Reduces Joint Inflammation and Erosion in Murine Collagen-Induced Arthritis[J]. Ann. Rheum. Dis., 2008,67(9):1211-1217.

    17. [17]

      Zhang W Q, Atkin A J, Thatcher R J, Whitwood A C, Fairlamb I J, Lynam J M. Diversity and Design of Metal-Based Carbon MonoxideReleasing Molecules (CO -RMs) in Aqueous Systems: Revealing the Essential Trends[J]. Dalton Trans., 2009,14(22):4351-4358.  

    18. [18]

      Kretschmer R, Gessner G, Gorls H, Heinemann S H, Westerhausen M. Dicarbonyl-bis(cysteamine)iron(Ⅱ): A Light Induced Carbon Monoxide Releasing Molecule Based on Iron (CORM-S1)[J]. J. Inorg. Biochem., 2011,105(1):6-9. doi: 10.1016/j.jinorgbio.2010.10.006

    19. [19]

      Crook S H, Mann B E, Meijer A J H M, Adams H, Sawle P, Scapens D, Motterlini R. [Mn(CO)4{S2CNMe(CH2CO2H)}], A New Water-Soluble CO-Releasing Molecule[J]. Dalton Trans., 2011,40(16):4230-235. doi: 10.1039/c1dt10125k

    20. [20]

      Gullotta F, Di Masi A, Ascenzi P. Carbon Monoxide: An Unusual Drug[J]. Iubmb Life, 2012,64(5):378-386. doi: 10.1002/iub.1015

    21. [21]

      Nobre L S, Seixas J D, Romao C C, Saraiva L M. Antimicrobial Action of Carbon Monoxide-Releasing Compounds.Antimicrob[J]. Agents Chemother., 2007,51(12):4303-4307. doi: 10.1128/AAC.00802-07

    22. [22]

      Bannenberg G L, Vieira H L A. Therapeutic Applications of the Gaseous Mediators Carbon Monoxide and Hydrogen Sulfide[J]. Expert Opin. Ther. Pat., 2009,19(5):663-682. doi: 10.1517/13543770902858824

    23. [23]

      Zobi F, Blacque O, Jacobs R A, Schaub M C, Bogdanova A Y. 17 e- Rhenium Dicarbonyl CO-Releasing Molecules on a Cobalamin Scaffold for Biological Application[J]. Dalton Trans., 2011,41(2):370-378.  

    24. [24]

      Sitnikov N S, Malysheva Y B, Fedorov A Y, Schmalz H G. Design and Synthesis of New Protease-Triggered CO-Releasing Peptide-Metal-Complex Conjugates[J]. Eur. J. Org. Chem., 2019(40):6830-6837.  

    25. [25]

      Kunz P C, Meyer H, Barthel J, Sollazzo S, Schmidt A M, Janiak C. Metal Carbonyls Supported on Iron Oxide Nanoparticles to Trigger the CO-Gasotransmitter Release by Magnetic Heating[J]. Chem. Commun., 2013,49(43):4896-4898. doi: 10.1039/c3cc41411f

    26. [26]

      Heinemann S H, Hoshi T, Westerhausen M, Schiller A. Carbon Monoxide-Physiology, Detection and Controlled Release[J]. Chem. Commun., 2014,50(28):3644-3660. doi: 10.1039/C3CC49196J

    27. [27]

      Ling K, Men F, Wang W C, Zhou Y Q, Zhang H W, Ye D W. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs)[J]. J. Med. Chem., 2018,61(7):2611-2635. doi: 10.1021/acs.jmedchem.6b01153

    28. [28]

      Hasegawa U, Van der Vlies A J, Simeoni E, Wandrey C, Hubbell J A. Carbon Monoxide-Releasing Micelles for Immunotherapy[J]. J. Am. Chem. Soc., 2010,132(51):18273-18280. doi: 10.1021/ja1075025

    29. [29]

      Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water -Soluble Diiron Hexacarbonyl Complex as a CO-RM: Controllable CO-Releasing, Releasing Mechanism and Biocompatibility[J]. Dalton Trans., 2013,42:15663-15669. doi: 10.1039/c3dt51281a

    30. [30]

      Chen L M, Jiang X U, Wang X L, Long L, Zhang J Y, Liu X M. A Kinetic Analysis of CO Release from a Diiron Hexacarbonyl Complex Promoted by Amino Acids[J]. New J. Chem., 2014,38(12):5957-5963. doi: 10.1039/C4NJ00661E

    31. [31]

      Jiang X J, Long L, Wang H L, Chen L M, Liu X M. Diiron Hexacarbonyl Complexes as Potential CO-RMs: CO -Releasing Initiated by a Substitution Reaction with Cysteamine and Structural Correlation to the Bridging Linkage[J]. Dalton Trans., 2014,43(26):9968-9975. doi: 10.1039/C3DT53620C

    32. [32]

      Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced Carbon Monoxide Release from Half-Sandwich Iron(Ⅱ) Carbonyl Complexes by Visible Irradiation: Kinetic Analysis and Mechanistic Investigation[J]. Chem. Eur. J., 2015,21(37):13065-13072. doi: 10.1002/chem.201501348

    33. [33]

      Guo Z M, Jin J, Xiao Z Y, Chen N W, Jiang X J, Liu X M, Wu L F, He Y, Zhang S H. Four Iron Carbonyl Complexes Containing both Pyridyl and Halide Ligands: Their Synthesis, Characterization, Stability, and Anticancer Activity[J]. Appl. Organomet. Chem., 2021,35(1)e6045.

    34. [34]

      Yang X Q, Jin J, Guo Z M, Xiao Z Y, Chen N W, Jiang X J, He Y, Liu X M. The Monoiron Anion fac -Fe(CO)3I3- and Its Organic Aminium Salts: Their Preparation, CO-Release, and Cytotoxicity[J]. New J. Chem., 2020,44(25):10300-10308. doi: 10.1039/D0NJ01182G

    35. [35]

      Xiao Z Y, Jiang R, Jin J, Yang X Q, Xu B Y, Liu X M, He Y B, He Y. Diiron(Ⅱ) Pentacarbonyl Complexes as CO-Releasing Molecules: Their Synthesis, Characterization, CO-Releasing Behaviour and Biocompatibility[J]. Dalton Trans., 2019,48(2):468-477. doi: 10.1039/C8DT03982H

    36. [36]

      Pierri A E, Huang P J, Garcia J V, Stanfill J G, Chui M, Wu G, Zheng N, Ford P C. A PhotoCORM Nanocarrier for CO Release Using NIR Light[J]. Chem. Commun., 2015,51(11):2072-2075.  

    37. [37]

      Ou J, Zheng W H, Xiao Z Y, Yan Y P, Jiang X J, Dou Y, Jiang R, Liu X M. Core-Shell Materials Bearing Iron(Ⅱ) Carbonyl Units and Their CO-Release via an Upconversion Process[J]. J. Mater. Chem. B, 2017,5(41):8161-8168. doi: 10.1039/C7TB01434A

    38. [38]

      Scapens D, Adams H, Johnson T R, Mann B E, Sawle P, Aqil R, Perrior T, Motterlini R. [(η-C5H 4R)Fe(CO) 2X], X=Cl, Br, I, NO3, CO2Me and[(η-C5 H 4R)Fe(CO) 3]+, R= (CH2)nCO2Me (n=0-2), and CO2CH 2CH2OH: A New Group of CO-Releasing Molecules[J]. Dalton Trans., 2007,43:4962-4973.

    39. [39]

      Holleman A F, Wiberg E. Inorganic Chemistry. San Diego: Academic Press, 2001: 136-140

  • 加载中
    1. [1]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    2. [2]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    3. [3]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    4. [4]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    5. [5]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    8. [8]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    9. [9]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    10. [10]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    12. [12]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    16. [16]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    17. [17]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    18. [18]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    19. [19]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    20. [20]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

Metrics
  • PDF Downloads(0)
  • Abstract views(442)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return