Citation: Yu-Peng TANG, Yan-Fei ZHAO, Hai-Ying YANG, Nan LI. Hydrogen Storage Capabilities of the Low-Lying Ca2B4 Clusters[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1391-1401. doi: 10.11862/CJIC.2022.118 shu

Hydrogen Storage Capabilities of the Low-Lying Ca2B4 Clusters

  • Corresponding author: Yu-Peng TANG, jctyp@163.com
  • Received Date: 16 January 2022
    Revised Date: 21 April 2022

Figures(7)

  • The structural feature and electronic property of Ca2B4, as well as its potential for hydrogen storage, have been studied using density functional theory. The first, second, and fourth low-lying isomers Ca2B4 10, Ca2B4 02, and Ca2B4 10 have high stabilities in thermodynamics and can adsorb 12, 12, and 10 H2 molecules with respective H2 gravimetric uptake capacity of 16.3%, 16.3%, and 14.0%, which far exceeds the target (5.5%) proposed by the US department of energy (DOE). The average absorption energies per H2 molecule are in the range of 0.58-4.21 eV for Ca2B4 01(H2)12, 0.54-3.69 eV for Ca2B4 02(H2)12, and 0.10-0.12 eV for Ca2B4 04(H2)10. Born-Oppenheimer molecular dynamic (BOMD) simulations indicate Ca2B4 01 and Ca2B4 02 are promising candidates for adsorbing hydrogen, but Ca2B4 04 is not. The results of hydrogen adsorption energies with Gibbs free energy correction indicate that 12 H2 molecules on Ca2B4 01 and Ca2B4 02 are energetically favorable with a wide range of temperatures at 101 325 Pa.
  • 加载中
    1. [1]

      Schlapbach L, Züttel A. Hydrogen-Storage Materials for Mobile Applications[J]. Nature, 2001,414:353-358. doi: 10.1038/35104634

    2. [2]

      Sartbaeva A, Kuznetsov V L, Wells S A, Edwards P P. Hydrogen Nexus in a Sustainable Energy Future[J]. Energy Environ. Sci., 2008,1(1):79-85. doi: 10.1039/b810104n

    3. [3]

      Züttel A, Remhof A, Borgschulte A, Friedrichs O. Hydrogen: The Future Energy Carrier[J]. Philos. Trans. R. Soc. London Ser. A, 2010,368(1923):3329-3342.

    4. [4]

      Züttel A, Wenger P, Sudan P, Mauron P, Orimo S I. Hydrogen Density in Nanostructured Carbon, Metals and Complex Materials[J]. Mater. Sci. Eng. B, 2004,108(1/2):9-18.

    5. [5]

      Graetz J. New Approaches to Hydrogen Storage[J]. Chem. Soc. Rev., 2009,38:73-82. doi: 10.1039/B718842K

    6. [6]

      Jena P. Materials for Hydrogen Storage: Past, Present, and Future[J]. J. Phys. Chem. Lett., 2011,2(3):206-211. doi: 10.1021/jz1015372

    7. [7]

      DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles

    8. [8]

      Orimo S I, Nakamori Y, Eliseo J R, Züttel A, Jensen C M. Complex Hydrides for Hydrogen Storage[J]. Chem. Rev., 2007,107(10):4111-4132. doi: 10.1021/cr0501846

    9. [9]

      Grochala W, Edwards P P. Thermal Decomposition of the Non-interstitial Hydrides for Storage and Production of Hydrogen[J]. Chem. Rev., 2004,104(3):1283-1316. doi: 10.1021/cr030691s

    10. [10]

      Yürüm Y, Taralp A, Veziroglu T N. Storage of Hydrogen in Nanostructured Carbon materials[J]. Int. J. Hydrogen Energy, 2009,34(9):3784-3798. doi: 10.1016/j.ijhydene.2009.03.001

    11. [11]

      Yildirim T, Iñiguez J, Ciraci S. Molecular and Dissociative Adsorption of Multiple Hydrogen Molecules on Transition Metal Decorated C60[J]. Phys. Rev. B, 2005,72(15):153403-153406. doi: 10.1103/PhysRevB.72.153403

    12. [12]

      Sun Q, Wang Q, Jena P, Kawazoe Y. Clustering of Ti on a C60 Surface and Its Effect on Hydrogen Storage[J]. J. Am. Chem. Soc., 2005,127(42):14582-14583. doi: 10.1021/ja0550125

    13. [13]

      Yildirim T, Ciraci S. Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium[J]. Phys. Rev. Lett., 2005,94(17):175501-175503. doi: 10.1103/PhysRevLett.94.175501

    14. [14]

      Sun Q, Jena P, Wang Q, Marquez M. First-Principles Study of Hydrogen Storage on Li12C60[J]. J. Am. Chem. Soc., 2006,128(30):9741-9745. doi: 10.1021/ja058330c

    15. [15]

      Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z. Calcium as the Superior Coating Metal in Functionalization of Carbon Fullerenes for High-Capacity Hydrogen Storage[J]. Phys. Rev. Lett., 2008,100(20):206806-206809. doi: 10.1103/PhysRevLett.100.206806

    16. [16]

      Zhang Y F, Cheng X L. Hydrogen Storage Property of Alkali and Alkaline-Earth Metal Atom Decorated C 24 fullerene: A DFT Study[J]. Chem. Phys., 2018,505:26-33. doi: 10.1016/j.chemphys.2018.03.010

    17. [17]

      Ren H J, Cui C X, Li X J, Liu Y J. A DFT Study of the Hydrogen Storage Potentials and Properties of Na- and Li-Doped Fullerene[J]. Int. J. Hydrogen Energy, 2017,42(1):312-321. doi: 10.1016/j.ijhydene.2016.10.151

    18. [18]

      Chavéz E L, Castañeda Y P, Quiroz A G, Alvarado F C, Góngora J D, González L J. Ti-Decorated C120 Nanotorus: A New Molecular Structure for Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2017,42(51):30237-30241. doi: 10.1016/j.ijhydene.2017.08.095

    19. [19]

      Ma L J, Han M, Wang J, Jia J F, Wu H S. Oligomerization of Vanadium-Acethlene Systems and Its Effect on Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2017,42(20):14188-14198. doi: 10.1016/j.ijhydene.2017.04.114

    20. [20]

      Tavhare P, Kalamse V, Krishna R, Titus E, Chaudhari A. Hydrogen Adsorption on Ce-Ethylene Complex Using Quantum Chemical Methods[J]. Int. J. Hydrogen Energy, 2016,41(27):11730-11735. doi: 10.1016/j.ijhydene.2015.11.172

    21. [21]

      Ma L J, Jia J F, Wu H S. Computational Investigation of Hydrogen Storage on Scandium-Acetylene System[J]. Int. J. Hydrogen Energy, 2015,40(1):420-428. doi: 10.1016/j.ijhydene.2014.10.136

    22. [22]

      Kalamse V, Wadnerkar N, Chaudhari A. Hydrogen Storage in C2H4V and C2H4V+Organometallic Compounds[J]. J. Phys. Chem. C, 2010,114(10):4704-4709. doi: 10.1021/jp910614n

    23. [23]

      Durgun E, Ciraci S, Zhou W, Yildirim T. Transition-Metal-Ethylene Complexes as High-Capacity Hydrogen-Storage Media[J]. Phys. Rev. Lett., 2006,97(22):226102-226105. doi: 10.1103/PhysRevLett.97.226102

    24. [24]

      Ma L J, Jia J F, Wu H S, Ren Y. Ti-η2-(C2H2) and HC≡C-TiH as High Capacity Hydrogen Storage Media[J]. Int. J. Hydrogen Energy, 2013,38(36):16185-16192. doi: 10.1016/j.ijhydene.2013.09.151

    25. [25]

      Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A. C2H2M (M=Ti, Li) Complex: A Possible Hydrogen Storage Material[J]. Int. J. Hydrogen Energy, 2012,37(4):3727-3732. doi: 10.1016/j.ijhydene.2011.05.061

    26. [26]

      Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A. Interaction of Molecular Hydrogen with Ni Doped Ethylene and Acetylene Complex[J]. Int. J. Hydrogen Energy, 2012,37(6):5114-5121. doi: 10.1016/j.ijhydene.2011.12.100

    27. [27]

      Chakraborty A, Giri S, Chattaraj P K. Analyzing the Efficiency of Mn-(C2H4)(M=Sc, Ti, Fe, Ni; n=1, 2) Complexes as Effective Hydrogen Storage Materials[J]. Struct. Chem., 2011,22(4):823-837. doi: 10.1007/s11224-011-9754-7

    28. [28]

      Phillips A B, Shivaram B S. High Capacity Hydrogen Absorption in Transition-Metal Ethylene Complexes: Consequences of Nanoclustering[J]. Nanotechnology, 2009,20(20):204020-204024. doi: 10.1088/0957-4484/20/20/204020

    29. [29]

      Du J, Sun X, Jiang G, Zhang C. The Hydrogen Storage on Heptacoordinate Carbon motif CTi72+[J]. Int. J. Hydrogen Energy, 2016,41(26):11301-11307. doi: 10.1016/j.ijhydene.2016.05.058

    30. [30]

      Venkataramanan N S, Sahara R, Mizuseki H, Kawazoe Y. Titanium-Doped Nickel Clusters TiNin (n=1-12): Geometry, Electronic, Magnetic, and Hydrogen Adsorption Properties[J]. J. Phys. Chem. A, 2010,114(15):5049-5057. doi: 10.1021/jp100459c

    31. [31]

      Du J G, Sun X Y, Jiang G, Zhang C. Hydrogen Capability of Bimetallic Boron Cycles: A DFT and Ab Initio MD Study[J]. Int. J. Hydrogen Energy, 2019,44(13):6763-6772. doi: 10.1016/j.ijhydene.2019.01.195

    32. [32]

      Guo C, Wang C. A Theoretical Study on Cage-like Clusters (C12-Ti6 and C12-Ti62+) for Dihydrogen Storage[J]. Int. J. Hydrogen Energy, 2019,44(21):10763-10769. doi: 10.1016/j.ijhydene.2019.02.212

    33. [33]

      Sathe R Y, Bae H, Lee H, Kumar T J D. Hydrogen Storage Capacity of Low-Lying Isomer of C24 Functionalized with Ti[J]. Int. J. Hydrogen Energy, 2020,45(16):9936-9945. doi: 10.1016/j.ijhydene.2020.02.016

    34. [34]

      MA L J, WANG J F, JIA J F, WU H S. Hydrogen Storage Properties of B12Sc4 and B12Ti4 Clusters[J]. Acta Phys.-Chim. Sin., 2012,28(8):1854-1860. doi: 10.3866/PKU.WHXB201205151

    35. [35]

      Tai T B, Nguyen M T. A Three-Dimensional Aromatic B6Li8 Complex as a High Capacity Storage Material[J]. Chem. Commum., 2013,49(9):913-915. doi: 10.1039/C2CC38038B

    36. [36]

      Bai H, Bai B, Zhang L, Huang W, Mu Y W, Zhai H J, Li S D. Lithium-Decorated Borospherene B40: A Promising Hydrogen Storage Medium[J]. Sci. Rep., 2016,6:35518-35527. doi: 10.1038/srep35518

    37. [37]

      Dong H, Hou T, Lee S T, Li Y. New Ti-Decorated B40 Fullerene as a Promising Hydrogen Storage Material[J]. Sci. Rep., 2015,5:9952-9959. doi: 10.1038/srep09952

    38. [38]

      Tang C M, Zhang X. The Hydrogen Storage Capacity of Sc Atoms Decorated Porous Boron Fullerene B40: A DFT Study[J]. Int. J. Hydrogen Energy, 2016,41(38):16992-16999. doi: 10.1016/j.ijhydene.2016.07.118

    39. [39]

      Du J G, Sun X Y, Zhang L, Zhang C Y, Jiang G. Hydrogen Storage of Li4&B36 Cluster[J]. Sci. Rep., 2018,8:1940-1945. doi: 10.1038/s41598-018-20452-8

    40. [40]

      Si L, Tang C M. The Reversible Hydrogen Storage Abilities of Metal Na (Li, K, Ca, Mg, Sc, Ti, Y) Decorated All-Boron Cage B28[J]. Int. J. Hydrogen Energy, 2017,42(26):16611-16619. doi: 10.1016/j.ijhydene.2017.05.181

    41. [41]

      Lu Q L, Hang S G, Li Y D, Wan J G, Luo Q Q. Alkali and Alkaline-Earth Atom-Decorated B38 Fullerenes and Their Potential for Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2015,40(38):13022-13028. doi: 10.1016/j.ijhydene.2015.08.008

    42. [42]

      Wang Y J, Xu L, Qiao L H, Ren J, Hou X R, Miao C Q. Ultra-High Capacity Hydrogen Storage of B6Be2 and B8Be2 Clusters[J]. Int. J. Hydrogen Energy, 2020,45(23):12932-12939. doi: 10.1016/j.ijhydene.2020.02.209

    43. [43]

      Guo C, Wang C. Computational Investigation of Hydrogen Storage on B5V3[J]. Mol. Phys., 2018,116(10):1290-1296. doi: 10.1080/00268976.2018.1423710

    44. [44]

      Ray S S, Sahoo S R, Sahu S. Hydrogen Storage in Scandium Doped Small Boron Clusters (BnSc2, n=3-10): A Density Functional Study[J]. Int. J. Hydrogen Energy, 2019,44(12):6019-6030. doi: 10.1016/j.ijhydene.2018.12.109

    45. [45]

      Huang H, Wu B, Gao Q, Li P, Yang X. Structural, Electronic and Spectral Properties Referring to Hydrogen Storage Capacity in Binary Alloy ScBn (n=1-12) Clusters[J]. Int. J. Hydrogen Energy, 2017,42(33):21086-21095. doi: 10.1016/j.ijhydene.2017.06.233

    46. [46]

      Guo C, Wang C. Remarkable Hydrogen Storage on Sc2B42+Cluster: A Computational Study[J]. Vacuum, 2018,149:134-139. doi: 10.1016/j.vacuum.2017.12.031

    47. [47]

      Guo C, Wang C. The Theoretical Research of Hydrogen Storage Capacities of Cu3Bx (x=1-4) Compounds Under Ambient Conditions[J]. Int. J. Hydrogen Energy, 2020,45(46):24947-24957. doi: 10.1016/j.ijhydene.2020.06.089

    48. [48]

      Du J G, Jiang G. An Aromatic Ca2B8 Complex for Reversible Hydrogen Storage[J]. Int. J. Hydrogen Energy, 2021,46(36):19023-19030. doi: 10.1016/j.ijhydene.2021.03.060

    49. [49]

      Lu T. Molclus Program, Version 1. 9. 9. 2, http://www.keinsci.com/research/molclus.html

    50. [50]

      Adamo C, Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model[J]. J. Chem. Phys., 1999,110(13):6158-6170. doi: 10.1063/1.478522

    51. [51]

      Krishnan R, Binkley J S, Seeger R, Pople J A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions[J]. J. Chem. Phys., 1980,72(1):650-654. doi: 10.1063/1.438955

    52. [52]

      Clark T, Chandrasekhar J, Spitznagel G W, Schleyer P V. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. Ⅲ.* the 3-21+G Basis Set for First-Row Elements, Li-F[J]. J. Comput. Chem., 1983,4(3):294-301. doi: 10.1002/jcc.540040303

    53. [53]

      Blaudeau J P, McGrath M P, Curtiss L A, Radom L. Extension of Gaussian-2(G2) Theory to Molecules Containing Third-Row Atoms K and Ca[J]. J. Chem. Phys., 1997,107(13):5016-5021. doi: 10.1063/1.474865

    54. [54]

      Wang Y J, Feng L Y, Guo J C, Zhai H J. Dynamic Mg2B8 Cluster: A Nanoscale Compass[J]. Chem. Asian J., 2017,12(22):2899-2903. doi: 10.1002/asia.201701310

    55. [55]

      Wang Y J, Guo M M, Wang G L, Miao C Q, Zhang N, Xue T D. The Structure and Chemical Bonding in Inverse Sandwich B6Ca2 and B8Ca2 Clusters: Conflicting Aromaticity vs[J]. Double Aromaticity. Phys. Chem. Chem. Phys., 2020,22(36):20362-20367. doi: 10.1039/D0CP03703F

    56. [56]

      Chai J D, Gordon M H. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections[J]. Phys. Chem. Chem. Phys., 2008,10(44):6615-6620. doi: 10.1039/b810189b

    57. [57]

      Boys S F, Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors[J]. Mol. Phys., 1970,19(4):553-566. doi: 10.1080/00268977000101561

    58. [58]

      Pople J A, Head-Gordon M. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies[J]. J. Chem. Phys., 1987,87(10):5968-5975. doi: 10.1063/1.453520

    59. [59]

      Hoffmann R, Schleyer P V R, Schaefer Ⅲ H F. Predicting Molecules-More Realism, Please![J]. Angew. Chem. Int. Ed., 2008,47(38):7164-7167. doi: 10.1002/anie.200801206

    60. [60]

      Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Comput. Chem., 2012,33(5):580-592. doi: 10.1002/jcc.22885

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    3. [3]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    6. [6]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    7. [7]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    8. [8]

      Lu LiSuticha ChuntaXianzi ZhengHaisheng HeWei WuYi Luβ-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662

    9. [9]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    10. [10]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    13. [13]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    14. [14]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    15. [15]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    16. [16]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    17. [17]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    18. [18]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    19. [19]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    20. [20]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

Metrics
  • PDF Downloads(2)
  • Abstract views(678)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return