Citation: Gang XU, Xiao-Nan JIANG, Wei-Xiang CHEN. Preparation of ZnS@C/rGO Composite for Electrochemical Reversible Lithium Storage[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 891-900. doi: 10.11862/CJIC.2022.090 shu

Preparation of ZnS@C/rGO Composite for Electrochemical Reversible Lithium Storage

  • Corresponding author: Wei-Xiang CHEN, weixiangchen@zju.edu.cn
  • Received Date: 23 December 2021
    Revised Date: 11 March 2022

Figures(8)

  • ZnS@C/reduce graphene oxide (rGO) composite was prepared by solvothermal reaction-hydrothermal treatment route. ZnS nanocrystal coated by amorphous carbon (ZnS@C) was prepared by the first-step solvothermal reaction, then ZnS@C/rGO was prepared by the second-step hydrothermal treatment. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical test results demonstrated that the as-prepared ZnS@C/rGO composite exhibited significantly enhanced electrochemical lithium storage performance in comparison to ZnS@C and ZnS/rGO. At the current density of 100 mA·g-1, ZnS@C/rGO electrode delivered the reversible specific capacity of 1 101 mAh·g-1 and 1 569 mAh·g-1, respectively, at the 1st and 100th cycle. After 1 200 cycles at the different current densities, the reversible specific capacity of 1 096 mAh·g-1 was remained at 2.0 A·g-1, indicating its stable long-cycle performance.
  • 加载中
    1. [1]

      Hu P, Jia Z Y, Wang Y, Zhou Q Q, Liu N, Li F, Wang J S. Interface Engineering of Hierarchical MoS2/ZnS/C Heterostructures as Anode Materials for Highly Improved Lithium Storage Capability[J]. ACS Appl. Energy Mater., 2020,3(8):7856-7864. doi: 10.1021/acsaem.0c01266

    2. [2]

      Wang A S, Chen X J, Yu G Y, Wang Y L. Carbon-Coated ZnS Composites for Lithium-Ion Battery Anode Materials[J]. Ionics, 2020,27(2):541-550.

    3. [3]

      Yuan H, Kong L, Li T. Zhang Q[J]. A Review of Transition Metal Chalcogenide/Graphene Nanocomposites for Energy Storage and Conversion. Chin. Chem. Lett., 2017,28(12):2180-2194.

    4. [4]

      Yang Q H, Xu L M, Luo S T, Chen M F, Wang X L, Ma L. One-Pot Hydrothermal Synthesis of ZnS/C Microsphere as an Electrode for Reversible Lithium-Storage[J]. Mater. Lett., 2019,254:386-389. doi: 10.1016/j.matlet.2019.07.095

    5. [5]

      He L, Liao X Z, Yang K, He Y S, Wen W, Ma Z F. Electrochemical Characteristics and Intercalation Mechanism of ZnS/C Composite as Anode Active Material for Lithium-Ion Batteries[J]. Electrochim. Acta, 2011,56(3):1213-1218. doi: 10.1016/j.electacta.2010.11.014

    6. [6]

      Park A R, Jeon K J, Park C M. Electrochemical Mechanism of Li Insertion/Extraction in ZnS and ZnS/C Anodes for Li-Ion Batteries[J]. Electrochim. Acta, 2018,265:107-114. doi: 10.1016/j.electacta.2018.01.158

    7. [7]

      Jang Y S, Kang Y C. Facile One-Pot Synthesis of Spherical Zinc Sulfide-Carbon Nanocomposite Powders with Superior Electrochemical Properties as Anode Materials for Li-Ion Batteries[J]. Phys. Chem. Chem. Phys., 2013,15(39):16437-16441. doi: 10.1039/c3cp53154f

    8. [8]

      Du X F, Zhao H L, Lu Y, Zhang Z J, Kulka A, Świerczek K. Synthesis of Core-Shell-like ZnS/C Nanocomposite as Improved Anode Material for Lithium Ion Batteries[J]. Electrochim. Acta, 2017,228:100-106. doi: 10.1016/j.electacta.2017.01.038

    9. [9]

      Bai J, Zhao B C, Zhou J F, Si J G, Fang Z T, Li K Z, Ma H Y, Dai J M, Zhu X B, Sun Y P. Glucose-Induced Synthesis of 1T-MoS2/C Hybrid for High-Rate Lithium-Ion Batteries[J]. Small, 2019,15(14)1805420. doi: 10.1002/smll.201805420

    10. [10]

      Xia G H, Li X B, He J J, Wang Y, Gu Y, Liu L Z, Huang J M, Dong P, Duan J G, Wang D, Zhang Y Y, Zhang Y J. A Biomass-Derived Biochar-Supported NiS/C Anode Material for Lithium-Ion Batteries[J]. Ceram. Int., 2021,47(15):20948-20955. doi: 10.1016/j.ceramint.2021.04.093

    11. [11]

      Ma J Y, Wang X J, Wang H, Wang G, Ma S H. Hollow ZnS Submicrospheres Encapsulated in Carbon Shells with Enhanced Lithium and Sodium Storage Properties[J]. J. Alloys Compd., 2018,735:51-61. doi: 10.1016/j.jallcom.2017.11.046

    12. [12]

      Ding H, Huang H C, Zhang X K, Xie L, Fan J Q, Jiang T, Shi D, Ma N, Tsai F C. Zinc Sulfide Decorated on Nitrogen-Doped Carbon Derived from Metal-Organic Framework Composites for Highly Reversible Lithium-Ion Battery Anode[J]. ChemElectroChem, 2019,6(22):5617-5626. doi: 10.1002/celc.201901568

    13. [13]

      Li J M, Fu Y, Shi X D, Xu Z M, Zhang Z A. Urchinlike ZnS Microspheres Decorated with Nitrogen-Doped Carbon: A Superior Anode Material for Lithium and Sodium Storage[J]. Chem. Eur. J., 2017,23(1):157-166. doi: 10.1002/chem.201604532

    14. [14]

      Zhang R P, Wang Y, Jia M Q, Xu J J, Pan E. One-Pot Hydrothermal Synthesis of ZnS Quantum Dots/Graphene Hybrids as a Dual Anode for Sodium Ion and Lithium Ion Batteries[J]. Appl. Surf. Sci., 2018,437:375-383. doi: 10.1016/j.apsusc.2017.12.110

    15. [15]

      Mao M L, Jiang L, Wu L C, Zhang M, Wang T H. The Structure Control of ZnS/Graphene Composites and Their Excellent Properties for Lithium-Ion Batteries[J]. J. Mater. Chem. A, 2015,3(25):13384-13389. doi: 10.1039/C5TA01501D

    16. [16]

      Feng Y, Zhang Y L, Wei Y Z, Song X Y, Fub Y B, Battaglia V S. A ZnS Nanocrystal/Reduced Graphene Oxide Composite Anode with Enhanced Electrochemical Performances for Lithium-Ion Batteries[J]. Phys. Chem. Chem. Phys., 2016,18(44):30630-30642. doi: 10.1039/C6CP06609G

    17. [17]

      Tao Y R, Xiong W W, Wu X C. Titanium Tri-and Di-sulfide Nanobelts/Graphene Composites for Rechargeable Lithium Battery Cathodes and Enhancement of Reversible Capacities[J]. Sci. Adv. Mater., 2014,6(9):1965-1972. doi: 10.1166/sam.2014.1964

    18. [18]

      Wang Y, Deng Q J, Xue W D, Jian Z, Zhao R, Wang J J. ZnO/rGO/C Composites Derived from Metal-Organic Framework as Advanced Anode Materials for Li-Ion and Na-Ion Batteries[J]. J. Mater. Sci, 2018,53(9):6785-6795. doi: 10.1007/s10853-018-2003-3

    19. [19]

      Wang Y F, Li X S, He M M, Du H, Wu X L, Hao J H, Li B J. CoreShells on Nanosheets: Fe3O4@ Carbon-Reduced Graphene Oxide Composites for Lithium-Ion Storage[J]. J. Solid State Electrochem, 2019,23(1):237-244. doi: 10.1007/s10008-018-4105-x

    20. [20]

      Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J. Am. Chem. Soc., 1958,80(6)1339. doi: 10.1021/ja01539a017

    21. [21]

      Chang K, Chen W X. L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ACS Nano, 2011,5(6):4720-4728. doi: 10.1021/nn200659w

    22. [22]

      Dong S H, Li C X, Ge X L, Li Z Q, Miao X G, Yin L. ZnS-Sb2S3@C Core-Double Shell Polyhedron Structure Derived from Metal-Organic Framework as Anodes for High Performance Sodium Ion Batteries[J]. ACS Nano, 2017,11(6):6474-6482. doi: 10.1021/acsnano.7b03321

    23. [23]

      Du H W, Gui X C, Yang R L, Zhang H, Lin Z Q, Liang B H, Chen W J, Zhu H, Chen J. ZnS Nanoparticles Coated with Graphene-like Nano-Cell as Anode Materials for High Rate Capability Lithium-Ion Batteries[J]. J. Mater. Sci., 2018,53(20):14619-14628. doi: 10.1007/s10853-018-2674-9

    24. [24]

      Tian G Y, Zhao Z J, Sarapulova A, Das C, Zhu L H, Liu S Y, Missiul A, Welter E, Maibach J, Dsoke S. Understanding the Li-Ion Storage Mechanism in a Carbon Composited Zinc Sulfide Electrode[J]. J. Mater. Chem. A, 2019,7(26):15640-15653. doi: 10.1039/C9TA01382B

    25. [25]

      Teng Y Q, Liu H, Liu D D, He H, Chen Y C. Pitaya-like Carbon-Coated ZnS/Carbon Nanospheres with Inner Three-Dimensional Nanostructure as High-Performance Anode for Lithium-Ion Battery[J]. J. Colloid Interface Sci., 2019,554:220-228. doi: 10.1016/j.jcis.2019.07.012

    26. [26]

      Xu Z C, Zhang Z Q, Li M Y, Yin Huiling, Lin H T, Zhou J, Zhuo S P. Three-Dimensional ZnS/Reduced Graphene Oxide/Polypyrrole Composite for High-Performance Supercapacitors and Lithium-Ion Battery Electrode Material[J]. J. Solid State Electrochem., 2019,23(12):3419-3428. doi: 10.1007/s10008-019-04434-y

    27. [27]

      Chang K, Chen W X. Single-Layer MoS2/Graphene Dispersed in Amorphous Carbon: Towards High Electrochemical Performances in Rechargeable Lithium Ion Batteries[J]. J. Mater. Chem., 2011,21(43):17175-17184. doi: 10.1039/c1jm12942b

    28. [28]

      Cao B, Liu H, Zhang X, Zhang P, Zhu Q Z, Du H L, Wang L L, Zhang R P, Xu B. MOF-Derived ZnS Nanodots/Ti3C2Tx MXene Hybrids Boosting Superior Lithium Storage Performance[J]. Nano-Micro Lett., 2021,13(1)202. doi: 10.1007/s40820-021-00728-x

    29. [29]

      Zhang W L, Huang Z Y, Zhou H H, Li S L, Wang C Q, Li H X, Yan Z H, Wang F, Kuang Y F. Facile Synthesis of ZnS Nanoparticles Decorated on Defective CNTs with Excellent Performances for Lithium-Ion Batteries Anode Material[J]. J. Alloys Compd., 2020,816152633. doi: 10.1016/j.jallcom.2019.152633

    30. [30]

      Tong R Y, Ning L M, Li H, Zhang Z T, Gu W, Liu X. Snake-like ZnO Nanorods Encapsulated by Carbon Shell Self-Assembled on the Porous N-Doped Carbon Nanocages with Co3O4 and ZnO Nanoparticles Embedded for Superior Lithium Storage[J]. Electrochim. Acta, 2020,359136924.

    31. [31]

      Yang T, Zhong J S, Liu J W, Yuan Y J, Yang D X, Mao Q N, Li X Y. Guo Z P[J]. A General Strategy for Antimony-Based Alloy Nanocomposite Embedded in Swiss-Cheese-like Nitrogen-Doped Porous Carbon for Energy Storage. Adv. Funct. Mater., 2021,31(13)2009433.

    32. [32]

      Kim D W, Jung S M, Senthil C, Kim S S, Ju B K, Jung H Y. Understanding Excess Li Storage beyond LiC6 in Reduced Dimensional Scale Graphene[J]. ACS Nano, 2021,15(1):797-808. doi: 10.1021/acsnano.0c07173

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(4)
  • Abstract views(600)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return