Citation: Lou-Jun GAO, Jing MI, Hong-Mei CHAI, Yi-Xia REN, Xue-Hua SUN, Gang-Qiang ZHANG, Yan ZHANG. Two 3D Microporous Zn-MOF for Fluorescence Sensing of Fe3+, Cr2O72-, and Acetone in Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 725-734. doi: 10.11862/CJIC.2022.068 shu

Two 3D Microporous Zn-MOF for Fluorescence Sensing of Fe3+, Cr2O72-, and Acetone in Aqueous Solution

Figures(7)

  • Two 3D microporous zinc metal-organic frameworks, formulated as [Zn3(DBA)(OH)(1, 10-phen)2]n (1) and {[Zn2(HDBA)(4, 4′-bipy)1.5]·H2O}n (2) (H5DBA=(3, 5-di(2′, 4′-dicarboxylphenyl)benzoic acid; 1, 10- phen=1, 10-phenan- throline; 4, 4′-bipy=4, 4′ -bipyridine), were synthesized under solvothermal conditions. Structural analysis shows that 1 could be described as a 3D microporous framework based on the trinuclear metal units, while 2 exhibits the micro- porous structure from the binuclear zinc groups. Compared with 2, 1 demonstrated a strong luminescence in the water, so it could be used as luminescent sensors for detection of Fe3+, Cr2O72-, and acetone molecules with high selectivity and sensitivity.
  • 加载中
    1. [1]

      Cheng P, Wang C H, Kaneti Y V, Eguchi M, Lin J J, Yamauchi Y, Na J. Practical MOF Nanoarchitectonics: New Strategies for Enhancing the Processability of MOFs for Practical Applications[J]. Langmuir, 2020,36(16):4231-4249. doi: 10.1021/acs.langmuir.0c00236

    2. [2]

      Shi L H, Li N, Wang D M, Fan M K, Zhang S L, Gong Z J. Environmental Pollution Analysis Based on the Luminescent Metal Organic Frameworks: A Review[J]. Trac-Trends Anal. Chem., 2021,134116131. doi: 10.1016/j.trac.2020.116131

    3. [3]

      Zhang X, Wang B, Alsalme A, Xiang S C, Zhang Z J, Chen B L. Design and Applications of Water-Stable Metal-Organic Frameworks: Status and Challenges[J]. Coord. Chem. Rev., 2020,423213507. doi: 10.1016/j.ccr.2020.213507

    4. [4]

      Smirnova S V, Samarina T O, Ilin D V, Pletnev I V. Multielement Determination of Trace Heavy Metals in Water by Microwave-Induced Plasma Atomic Emission Spectrometry after Extraction in Unconventional Single - Salt Aqueous Biphasic System[J]. Anal. Chem., 2018,90(10):6323-6331. doi: 10.1021/acs.analchem.8b01136

    5. [5]

      Liang J Y, Zulkifli M Y B, Choy S, Li Y, Gao M, Kong B, Yun J, Liang K. Metal-Organic Framework - Plant Nanobiohybrids as Living Sensors for On - Site Environmental Pollutant Detection[J]. Environ. Sci. Technol., 2020,54(18):11356-11364. doi: 10.1021/acs.est.0c04688

    6. [6]

      Zuo H Y, Li Y, Liao Y Z. Europium Ionic Liquid Grafted Covalent Organic Framework with Dual Luminescence Emissions as Sensitive and Selective Acetone Sensor[J]. ACS Appl. Mater. Interfaces, 2019,11(42):39201-39208. doi: 10.1021/acsami.9b14795

    7. [7]

      Sun S B, Xiong X, Han J G, Chang X T, Wang N N, Wang M W, Lei Y H, Liu T, Zhu Y Q. 2D/2D Graphene Nanoplatelet -Tungsten Trioxide Hydrate Nanocomposites for Sensing Acetone[J]. ACS Appl. Nano Mater., 2019,2(3):1313-1324. doi: 10.1021/acsanm.8b02185

    8. [8]

      Yu H H, Chi J Q, Su Z M, Li X, Sun J, Zhou C, Hu X L, Liu Q. A Water-Stable Terbium Metal-Organic Framework with Functionalized Ligands for the Detection of Fe3+, Cr2O72- Ions in Water and Picric Acid in Seawater[J]. CrystEngComm, 2020,22:3638-3643. doi: 10.1039/D0CE00430H

    9. [9]

      Ma D X, Li B Y, Cui Z H, Liu K, Chen C L, Li G H, Hua J, Ma B H, Shi Z, Feng S H. Multifunctional Luminescent Porous Organic Polymer for Selectively Detecting Iron Ions and 1, 4-Dioxane via Luminescent Turn - Off and Turn - On Sensing[J]. ACS Appl. Mater. Interfaces, 2016,8(36):24097-24103. doi: 10.1021/acsami.6b07470

    10. [10]

      Guo L, Liu Y, Kong R M, Chen G, Liu Z, Qu F L, Xia L, Tan W H. A Metal-Organic Framework as Selectivity Regulator for Fe3+ and Ascorbic Acid Detection[J]. Anal. Chem., 2019,91(19):12453-12460. doi: 10.1021/acs.analchem.9b03143

    11. [11]

      Chen W, Fan R Q, Fan J Z, Liu H Y, Sun T C, Wang P, Yang Y L. Lanthanide Coordination Polymer-Based Composite Films for Selective and Highly Sensitive Detection of Cr2O72- in Aqueous Media[J]. Inorg. Chem., 2019,58(22):15118-15125. doi: 10.1021/acs.inorgchem.9b01841

    12. [12]

      Yu H H, Fan M Y, Liu Q, Su Z M, Li X, Pan Q Q, Hu X L. Two Highly Water - Stable Imidazole - Based Ln - MOFs for Sensing Fe3+, Cr2O72-/CrO42- in a Water Environment[J]. Inorg. Chem., 2020,59(3):2005-2010. doi: 10.1021/acs.inorgchem.9b03364

    13. [13]

      He T, Zhang Y Z, Kong X J, Yu J M, Lv X L, Wu Y F, Guo Z J, Li J R. Zr(Ⅳ) - Based Metal-Organic Framework with T Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr2O72- in Water[J]. ACS Appl. Mater. Interfaces, 2018,10(19):16650-16659. doi: 10.1021/acsami.8b03987

    14. [14]

      Zou J Y, Li L, You S Y, Chen K H, Dong X N, Chen Y H, Cui J Z. A usf Zinc(Ⅱ) Metal-Organic Framework as a Highly Selective Luminescence Probe for Acetylacetone Detection and Its Postsynthetic Cation Exchange[J]. Cryst. Growth Des., 2018,18(7):3997-4003. doi: 10.1021/acs.cgd.8b00344

    15. [15]

      Xu W F, Chen H H, Xia Z Q, Ren C T, Han J, Sun W J, Wei Q, Xie G, Chen S P. A Robust Tb - MOF for Ultrasensitive Detection of Trinitrophenol: Matched Channel Dimensions and Strong Host-Guest Interactions[J]. Inorg. Chem., 2019,58(12):8198-8207. doi: 10.1021/acs.inorgchem.9b01008

    16. [16]

      Kumar S, Jain S, Nehra M, Dilbaghi N, Marrazza G, Kim K H. Green Synthesis of Metal-Organic Frameworks: A State-of-the-Art Review of Potential Environmental and Medical Applications[J]. Coord. Chem. Rev., 2020,420213407. doi: 10.1016/j.ccr.2020.213407

    17. [17]

      Orellana-Tavra C, Köppen M, Li A, Stock N, Fairen-Jimenez D. Biocompatible, Crystalline and Amorphous Bismuth - Based Metal-Organic Frameworks for Drug Delivery[J]. ACS Appl. Mater. Interfaces, 2020,12(5):5633-5641. doi: 10.1021/acsami.9b21692

    18. [18]

      Kiadeh S Z H, Ghaee A, Farokhi M, Nourmohammadi J, Bahi A, Ko F K. Electrospun Pectin/Modified Copper - Based Metal-Organic Framework (MOF) Nanofibers as a Drug Delivery System[J]. Int. J. Biol. Macromol., 2021,173:351-365. doi: 10.1016/j.ijbiomac.2021.01.058

    19. [19]

      Strauss I, Mundstock A, Trger M, Lange K, Hwang S, Chmelik C, Rusch P, Bigall N C, Pichler T, Shiozawa H, Cgro J. Metal-Organic Framework Co-MOF-74-Based Host-Guest Composites for Resistive Gas Sensing[J]. ACS Appl. Mater. Interfaces, 2019,11(15):14175-14181. doi: 10.1021/acsami.8b22002

    20. [20]

      Li Y, Xiao A S, Zou B, Zhang H X, Yan K L, Lin Y. Advances of Metal-Organic Frameworks for Gas Sensing[J]. Polyhedron, 2018,154:83-97. doi: 10.1016/j.poly.2018.07.028

    21. [21]

      Rachuri Y, Parmar B, Suresh E. 3D Co(Ⅱ)/Cd(Ⅱ) Metal-Organic Frameworks: Luminescent Cd-MOF for Detection and Adsorption of 2, 4, 6-Trinitrophenol in the Aqueous Phase[J]. Cryst. Growth Des., 2018,18(5):3062-3072. doi: 10.1021/acs.cgd.8b00204

    22. [22]

      Wang X K, Liu J, Zhang L, Dong L Z, Li S L, Kan Y H, Li D S, Lan Y Q. Monometallic Catalytic Models Hosted in Stable Metal-Organic Frameworks for Tunable CO2 Photoreduction[J]. ACS Catal., 2019,9(3):1726-1732. doi: 10.1021/acscatal.8b04887

    23. [23]

      Shi Y, Yang A F, Cao C S, Zhao B. Applications of MOFs: Recent Advances in Photocatalytic Hydrogen Production from Water[J]. Coord. Chem. Rev., 2019,390:50-75. doi: 10.1016/j.ccr.2019.03.012

    24. [24]

      Chuang C H, Kung C W. Metal-Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities[J]. Electroanalysis, 2020,32:1-12. doi: 10.1002/elan.201900434

    25. [25]

      Liu W, Yin X B. Metal Organic Frameworks for Electrochemical Applications[J]. Trac-Trends Anal. Chem., 2016,75:86-96. doi: 10.1016/j.trac.2015.07.011

    26. [26]

      Yi F Y, Chen D X, Wu M K, Han L, Jiang H L. Chemical Sensors Based on Metal-Organic Frameworks[J]. ChemPlusChem, 2016,81(8):675-690. doi: 10.1002/cplu.201600137

    27. [27]

      Huangfu M J, Wang M, Lin C, Wang J, Wu P Y. Luminescent Metal-Organic Frameworks as Chemical Sensors Based on"Mechanism-Response": A Review[J]. Dalton Trans., 2021,50:3429-3449. doi: 10.1039/D0DT04276E

    28. [28]

      Yang G L, Jiang X L, Xu H, Zhao B. Applications of MOFs as Luminescent Sensors for Environmental Pollutants[J]. Small, 2021,17(22)2005327. doi: 10.1002/smll.202005327

    29. [29]

      He J, Xu J L, Yin J C, Li N, Bu X H. Recent Advances in Luminescent Metal-Organic Frameworks for Chemical Sensors[J]. Sci. China Mater., 2019,62:1655-1678. doi: 10.1007/s40843-019-1169-9

    30. [30]

      Fan C B, Zhang X, Li N N, Xu C G, Wu R X, Zhu B, Zhang G L, Bi S Y, Fan Y H. Zn-MOFs Based Lumines cent Sensors for Selective and Highly Sensitive Detection of Fe3+ and Tetracycline Antibiotic[J]. J. Pharm. Biomed. Anal., 2020,188113444. doi: 10.1016/j.jpba.2020.113444

    31. [31]

      Rath B B, Vittal J J. Water Stable Zn Metal-Organic Framework as a Selective and Sensitive Luminescent Probe for Fe(Ⅲ) and Chromate Ions[J]. Inorg. Chem., 2020,59(13):8818-8826. doi: 10.1021/acs.inorgchem.0c00545

    32. [32]

      Huang H, Gao W, Zhang X M, Zhou A M, Liu J P. 3D Ln -MOFs: Displaying Slow Magnetic Relaxation and Highly Sensitive Luminescence Sensing of Alkylamines[J]. CrystEngComm, 2018,21(4):694-702.

    33. [33]

      Ye R P, Yang J X, Zhang X, Zhang L, Yao Y G. Diverse Zn(Ⅱ) MOFs Assembled from V - Shaped Asymmetric Multicarboxylate and N-Donor Ligands[J]. J. Mol. Struct., 2016,1106:192-199. doi: 10.1016/j.molstruc.2015.10.086

    34. [34]

      Ren Y X, Zhao X L, Wang Z X, Pan Y, Li H P, Wang F Y, Zhu S F, Shao C H. Effects of Template Molecules on the Structures and Luminescence Intensities of a Series of Porous Tb-MOFs Based on the 2-Nitroterephthalate Ligand[J]. RSC Adv., 2018,817497. doi: 10.1039/C8RA01224E

    35. [35]

      Gu J Z, Cui Y H, Liang X X, Wu J, Lv D Y, Kirillov A M. Structurally Distinct Metal-Organic and H-Bonded Networks Derived from 5-(6-Carboxypyridin-3-yl)isophthalic Acid: Coordination and Template Effect of 4, 4'-Bipyridine[J]. Cryst. Growth Des., 2016,16(8):4658-4670. doi: 10.1021/acs.cgd.6b00735

    36. [36]

      Wang T, Liu Q H, Gao Y, Yang X Y, Yang W T, Dang S, Sun Z M. A Multi - Responsive Luminescent Sensor towards Fe3+ and Acetone Based on a Cd-Containing Metal-Organic Framework[J]. Chin. Chem. Lett., 2016,27:497-501. doi: 10.1016/j.cclet.2016.01.011

    37. [37]

      Ju P, Yang H, Jiang L, Li M T, Yu Yang, Zhang E S. A Novel High Sensitive Cd -MOF Fluorescent Probe for Acetone Vapor in Air and Picric Acid in Water: Synthesis, Structure and Sensing Properties[J]. Spectrochim. Acta Part A., 2021,246118962. doi: 10.1016/j.saa.2020.118962

    38. [38]

      Zhao F H, Guo W Y, Li S Y, Li Z L, Yan X Q, Jia X M, Huang L W, You J M. Two Entangled Photoluminescent MOFs of Naphthalenedisulfonate and Bis(benzimidazole) Ligands for Selective Sensing of Fe3+[J]. J. Solid State Chem., 2019,278120926. doi: 10.1016/j.jssc.2019.120926

    39. [39]

      Hou B L, Tian D, Liu J, Dong L Z, Li S L, Li D S, Lan Y Q. A Water-Stable Metal-Organic Framework for Highly Sensitive and Selective Sensing of Fe3+ Ion[J]. Inorg. Chem., 2016,55(20):10580-10586. doi: 10.1021/acs.inorgchem.6b01809

    40. [40]

      Liu L Z, Wang Y, Lin R Y, Yao Z Z, Lin Q J, Wang L H, Zhang Z J, Xiang S C. Two Water - Stable Lanthanide Metal-Organic Frameworks with Oxygen-Rich Channels for Fluorescence Sensing of Fe(Ⅲ) Ions in Aqueous Solution[J]. Dalton Trans., 2018,47:16190-16196. doi: 10.1039/C8DT03741H

    41. [41]

      Yi F Y, Li J P, Wu D, Sun Z M. A Series of Multifunctional Metal-Organic Frameworks Showing Excellent Luminescent Sensing, Sensitization, and Adsorbent Abilities[J]. Chem. Eur. J., 2015,21:11475-11482. doi: 10.1002/chem.201500595

    42. [42]

      Mukherjee S, Ganguly S, Samanta D, Das D. Sustainable Green Route to Synthesize Functional Nano - MOFs as Selective Sensing Probes for CrⅥ Oxoanions and as Specific Sequestering Agents for Cr2O72-[J]. ACS Sustainable Chem. Eng., 2020,8(2):1195-1206. doi: 10.1021/acssuschemeng.9b06393

  • 加载中
    1. [1]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    2. [2]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    3. [3]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    4. [4]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    8. [8]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    9. [9]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    18. [18]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(11)
  • Abstract views(478)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return