Citation: Shi-Zhao WU, Han-Lu GAO, Xiao-Feng LU, Shi-Tao ZHENG, Jing GAO, Guo-Hua LI. Mesoporous Tungsten Carbide Nanoflakes Globular Clusters: Preparation and Electrocatalytic Properties for Hydrogen Evolution[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 459-468. doi: 10.11862/CJIC.2022.051 shu

Mesoporous Tungsten Carbide Nanoflakes Globular Clusters: Preparation and Electrocatalytic Properties for Hydrogen Evolution

  • Corresponding author: Guo-Hua LI, nanozjut@zjut.edu.com
  • Received Date: 23 September 2021
    Revised Date: 7 January 2022

Figures(11)

  • Tungsten carbide nanoflakes globular clusters (WC NFs) with the typical mesoporous structure were prepared by controlled breakdown anodization by a gas-solid carburization process. The crystal phase, microstructure, and pore size distribution of the nanoflowers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and N2 adsorption-desorption test. The electrochemical properties were evaluated using linear sweep voltammetry, cyclic voltammetry, chronoamperometry, and electro-chemical impedance spectroscopy in 1 mol·L-1 H2SO4 solution. The results showed that as-prepared WC NFs exhibited enhanced superior hydrogen evolution performance in terms of a small η10 (overpotential to obtain a current density of 10 mA·cm-2) of 150 mV, a Tafel slope of 56 mV·dec-1, and outstanding long-term cycling stability.
  • 加载中
    1. [1]

      Li H, Hu M H, Zhang L Y, Huo L L, Jing P, Liu B C, Gao R, Zhang J, Liu B. Hybridization of Bimetallic Molybdenum-Tungsten Carbide with Nitrogen-Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis[J]. Adv. Funct. Mater., 2020,30(40)2003198. doi: 10.1002/adfm.202003198

    2. [2]

      Chen D, Zhu J W, Pu Z H, Mu S C. Anion Modulation of Pt-Group Metals and Electrocatalysis Applications[J]. Chem. Eur. J., 2021,27(48):12257-12271. doi: 10.1002/chem.202101645

    3. [3]

      Lei Y P, Wang Y C, Liu Y, Song C Y, Li Q, Wang D S, Li Y D. Designing Atomic Active Centers for Hydrogen Evolution Electrocata-lysts[J]. Angew. Chem. Int. Ed., 2020,59(16):20794-20812.

    4. [4]

      Zhang Q Q, Guan J Q. Single-Atom Catalysts for Electrocatalytic Applications[J]. Adv. Funct. Mater., 2020,30(31)2000768. doi: 10.1002/adfm.202000768

    5. [5]

      She Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design[J]. Science, 2017,355(6321)eaad4998. doi: 10.1126/science.aad4998

    6. [6]

      Qin T C, Wang Z G, Wang Y Q, Besenbacher F, Otyepka M, Dong M D. Recent Progress in Emerging Two-Dimensional Transition Metal Carbides[J]. Nano-Micro Lett., 2021,13(1)183. doi: 10.1007/s40820-021-00710-7

    7. [7]

      Eftekhari A. Electrocatalysts for Hydrogen Evolution Reaction[J]. Int. J. Hydrogen Energy, 2017,42(16):11053-11077. doi: 10.1016/j.ijhydene.2017.02.125

    8. [8]

      Yang X F, Kimmel Y C, Fu J, Koel B E, Chen J G. Activation of Tung-sten Carbide Catalysts by Use of an Oxygen Plasma Pretreatment[J]. ACS Catal., 2012,2(5):765-769. doi: 10.1021/cs300081t

    9. [9]

      Zhang L N, Ma Y Y, Lang Z L, Wang Y H, Khan S U, Yan G, Tan H Q, Zang H Y, Li Y G. Ultrafine Cable-like WC/W2C Heterojunction Nanowires Covered by Graphitic Carbon Towards Highly Efficient Electrocatalytic Hydrogen Evolution[J]. J. Mater. Chem. A, 2018,6(31):15395-15403. doi: 10.1039/C8TA05007D

    10. [10]

      Garcia-Esparza A T, Cha D, Ou Y W, Kubota J, Domen K, Takanabe K. Tungsten Carbide Nanoparticles as Efficient Cocatalysts for Pho-tocatalytic Overall Water Splitting[J]. ChemSusChem, 2013,6(1):168-181. doi: 10.1002/cssc.201200780

    11. [11]

      Zhang H F, Pan Q, Sun Z P, Cheng C W. Three-Dimensional Macro-porous W2C Inverse Opal Arrays for the Efficient Hydrogen Evolu- tion Reaction[J]. Nanoscale, 2019,11(24):11505-11512. doi: 10.1039/C9NR03548F

    12. [12]

      Ko Y J, Cho J M, Kim I, Jeong D S, Lee K S, Park J K, Balk Y J, Choi H J, Lee W S. Tungsten Carbide Nanowalls as Electrocatalyst for Hydrogen Evolution Reaction: New Approach to Durability Issue[J]. Appl. Catal. B, 2017,203:684-691. doi: 10.1016/j.apcatb.2016.10.085

    13. [13]

      Chen Z Y, Duan L F, Sheng T, Lin X, Chen Y F, Chu Y Q, Sun S G, Lin W F. Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions[J]. ACS Appl. Mater. Interfaces, 2017,9(24):20594-20602. doi: 10.1021/acsami.7b04419

    14. [14]

      Fei H L, Yang Y, Fan X J, Wang G, Ruan G D, Tour J M. Tungsten-Based Porous Thin-Films for Electrocatalytic Hydrogen Generation[J]. J. Mater. Chem. A, 2015,3(11):5798-5804. doi: 10.1039/C4TA06938B

    15. [15]

      Kang J S, Kim J, Lee M J, Son Y J, Jeong J, Chung D Y, Lim A, Choe H, Park H S, Sung Y E. Electrochemical Synthesis of Nanopo-rous Tungsten Carbide and Its Application as Electrocatalysts for Photoelectrochemical Cells[J]. Nanoscale, 2017,9(17):5413-5424. doi: 10.1039/C7NR00216E

    16. [16]

      Narges F F, Tohru S. A Novel Method for Synthesis of Titania Nano-tube Powders Using Rapid Breakdown Anodization[J]. Chem. Mater., 2009,21(9):1967-1979. doi: 10.1021/cm900410x

    17. [17]

      Hanna S, Veronika P, Ludek H, Jan M M. Preparation of Porcupine-like Bi2O3 Needle Bundles by Anodic Oxidation of Bismuth[J]. Eletrochem. Commun., 2017,84:6-9. doi: 10.1016/j.elecom.2017.09.013

    18. [18]

      Hanna S, Zdenek S, Jan M, Ludek H, Roman B, Tomas W, Jan M M. Bismuth Oxychloride Nanoplatelets by Breakdown Anodization[J]. ChemElectroChem, 2019,6(2):336-341. doi: 10.1002/celc.201801280

    19. [19]

      Weidman M C, Esposito D V, Hsu Y C, Chen J C. Comparison of Electrochemical Stability of Transition Metal Carbides (WC, W2C, Mo2C) Over a Wide pH Range[J]. J. Power Sources, 2012,202:11-17. doi: 10.1016/j.jpowsour.2011.10.093

    20. [20]

      Zeng M Q, Chen Y X, Li J X, Xue H F, Mendes R G, Liu J X, Zhang T, Rümmeli M H, Fu L. 2D WC Single Crystal Embedded in Gra-phene for Enhancing Hydrogen Evolution Reaction[J]. Nano Energy, 2017,33:356-362. doi: 10.1016/j.nanoen.2017.01.057

    21. [21]

      Emin S, Altinkaya C, Semerci A, Okuyucu H, Yildiz A, Stefanov P. Tungsten Carbide Electrocatalysts Prepared from Metallic Tungsten Nanoparticles for Efficient Hydrogen Evolution[J]. Appl. Catal. B, 2018,236:147-153. doi: 10.1016/j.apcatb.2018.05.026

    22. [22]

      Wang Y N, Zhang L P, Meng X X, Feng L, Wang T, Zhang W M, Yang N T. Scalable Processing Hollow Tungsten Carbide Spherical Superstructure as an Enhanced Electrocatalyst for Hydrogen Evolu-tion Reaction over a Wide pH Range[J]. Electrochim. Acta, 2019,319:775-782. doi: 10.1016/j.electacta.2019.07.038

    23. [23]

      Zhao T, Gao J K, Wu F, He P P, Li Y W, Yao J M. Highly Active Cobalt/Tungsten Carbide@N-Doped Porous Carbon Nanomaterials Derived from Metal-Organic Frameworks as Bifunctional Catalysts for Overall Water Splitting[J]. Energy Technol., 2019,7(4)1800969. doi: 10.1002/ente.201800969

    24. [24]

      Wang F M, He P, Li Y C, Shifa A, Deng S F, Liu K L, Wang Q S, Wang F, Wen Y, Wang Z X, Zhan X Y, Sun L F, He J. Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolu-tion Catalysis[J]. Adv. Funct. Mater., 2017,27(7)1605802. doi: 10.1002/adfm.201605802

    25. [25]

      Kim I, Park S W, Kim D W. Carbon-Encapsulated Multi-phase Nanocomposite of W2C@WC1-x as a Highly Active and Stable Elec-trocatalyst for Hydrogen Generation[J]. Nanoscale, 2018,10(45):21123-21131. doi: 10.1039/C8NR07221C

    26. [26]

      Hu Y, Yu B, Li W X, Ramadoss M, Chen Y F. W2C Nanodot-Decorated CNT Networks as a Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media[J]. Nanoscale, 2019,11(11):4876-4884. doi: 10.1039/C8NR10281C

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(1)
  • Abstract views(435)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return