Citation: SHAO Ya-Jie, SHEN Jie, GONG Shao-Kang, CHEN Wen, ZHOU Jing. Resistance Switching Effect of CuInS2 Quantum Dots[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(11): 2093-2099. doi: 10.11862/CJIC.2020.225 shu

Resistance Switching Effect of CuInS2 Quantum Dots

  • Corresponding author: ZHOU Jing, zhoujing@whut.edu.cn
  • Received Date: 23 April 2020
    Revised Date: 21 August 2020

Figures(7)

  • CuInS2 quantum dots with semiconductor effect were prepared by improved thermal decomposition method, and the uniform size of quantum dots was 4.2 nm. The Au/CuInS2/FTO device exhibited typical bipolar resistance characteristics, with an ON/OFF switching ratio of about 103, an ON voltage of -3.8 V and an OFF voltage of 4 V. The resistance mechanism of the device was studied by linear fitting the I-V characteristic curve of the device. The device has space-limiter charge (SCLC) conduction mechanism in high resistance state and ohmic conduction mechanism in low resistance state. The resistance characteristic of the device is mainly caused by the charge being trapped by the potential well generated by the defect in the CuInS2 film. The charge is moved in the trap by adjusting the height of the trap barrier, which results in the generation and fracture of the conductive path, so that the device is in a high resistance state and a low resistance state.
  • 加载中
    1. [1]

      Jeong H Y, Kim J Y, Yoon T H, et al. Curr. Appl. Phys., 2010, 10(1):e46-e49  doi: 10.1016/j.cap.2009.12.011

    2. [2]

      Xu Z, Bando Y, Wang W L, et al. ACS Nano, 2010, 4(5):2515-2522  doi: 10.1021/nn100483a

    3. [3]

      Liu S Q, Wu N J, Ignatiev A. Appl. Phys. Lett., 2000, 6(19):2749-2751

    4. [4]

      Han S T, Hu L, Wang X, et al. Adv. Sci., 2017, 4(8):1600435  doi: 10.1002/advs.201600435

    5. [5]

      Seok J Y, Song S J, Yoon J H, et al. Adv. Funct. Mater., 2014, 24(34):5316-5339  doi: 10.1002/adfm.201303520

    6. [6]

      Kannan V, Rhee J K. Appl. Phys. Lett., 2011, 99(14):143504  doi: 10.1063/1.3647629

    7. [7]

      Portney N G, Martinez-morales A A, Ozkan M. ACS Nano, 2008, 2(2):191-196  doi: 10.1021/nn700240z

    8. [8]

      Annoop G, Kim T Y, Lee H J, et al. Adv. Electron. Mater., 2017, 3(10):1700264  doi: 10.1002/aelm.201700264

    9. [9]

      Barkhouse D A R, Pattantyus-Abraham A G, Levina L, et al. ACS Nano, 2008, 2(11):2356-2362  doi: 10.1021/nn800471c

    10. [10]

      Kim D G, Tomihira K, Okahara S, et al. J. Cryst. Growth, 2008, 310(18):4244-4247  doi: 10.1016/j.jcrysgro.2008.06.059

    11. [11]

      Fischbein M D, Drndic M. Appl. Phys. Lett., 2005, 86(19):193106  doi: 10.1063/1.1923189

    12. [12]

      Ali S, Bae J, Lee C H, et al. Org. Electron., 2015, 25:225-231  doi: 10.1016/j.orgel.2015.06.040

    13. [13]

      Kannan V, Rhee J K. J. Appl. Phys., 2011, 99(8):143504

    14. [14]

      Sarkar P K, Bhattacharjee S, Prajapat M, et al. RSC Adv., 2015, 5:105661-105667  doi: 10.1039/C5RA15581A

    15. [15]

      Wang D L, Ji F Z, Chen X M, et al. Appl. Phys. Lett., 2017, 110(9):093501  doi: 10.1063/1.4977488

    16. [16]

      Kim D H, Wu C, Park D H, et al. ACS Appl. Mater. Interfaces, 2018, 10(17):14843-14849  doi: 10.1021/acsami.7b18817

    17. [17]

      Qi M, Bai L, Xu H Y, et al. J. Mater. Chem. C, 2018, 6(8):2016-2033

    18. [18]

      Chen Z, Zhang Y, Yu Y, et al. Appl. Phys. Lett., 2019, 114(18):181103  doi: 10.1063/1.5087594

    19. [19]

      Zhu M, Li Y, Tian S, et al. J. Colloid Interface Sci., 2019, 534:509-517  doi: 10.1016/j.jcis.2018.09.065

    20. [20]

      Arshad A, Akram R, Iqbal S, et al. Arabian J. Chem., 2019, 12(8):4840-4847  doi: 10.1016/j.arabjc.2016.10.002

    21. [21]

      QU Ling-Zhi, CHENG Zhi-Qiang, DENG Da-Wei, et al. Chinese J. Inorg. Chem., 2013, 29(7):1361-1368
       

    22. [22]

      Peng Z Y, Liu Y L, Shu W, et al. Chem. Phys. Lett., 2013, 586:85-90  doi: 10.1016/j.cplett.2013.08.109

    23. [23]

      Nakamuran H, Kato W, Maeda H, et al. Chem. Mater., 2006, 18:3330-3335  doi: 10.1021/cm0518022

    24. [24]

      Zhong H Z, Lo S S, Scholes G D, et al. ACS Nano, 2010, 4:5253-5262  doi: 10.1021/nn1015538

    25. [25]

      Hu X, Zhang Q X, Huang X M, et al. J. Mater. Chem., 2011, 21(40):15903-15905  doi: 10.1039/c1jm12629f

    26. [26]

      Kruszynska M, Borchert H, Parisi J, et al. J. Am. Chem. Soc., 2010, 132(45):15976-15986  doi: 10.1021/ja103828f

    27. [27]

      Deng C, Fu B, Li L L, et al. J. Nanosci. Nanotechnol., 2020, 20(7):4533-4536  doi: 10.1166/jnn.2020.17894

    28. [28]

    29. [29]

      Mourdikoudis S, Liz-Marzán, Luis M. Chem. Mater., 2013, 25 (9):1465-1476  doi: 10.1021/cm4000476

    30. [30]

      Kagan C R, Lifshitz E, Sargent E H, et al. Science, 2016, 353 (6302):aac5523

    31. [31]

      Robertson J. Philos. Mag. B, 1991, 63(1):47-77  doi: 10.1080/01418639108224430

    32. [32]

      Liu Y L, Shu W, Chen K Q, et al. ACS Catal., 2012, 2(12):2557-2565  doi: 10.1021/cs300501e

    33. [33]

      33]Hsu C C, Chuang P Y, Chen Y T. IEEE Trans. Electron Devices, 2017(99):1-4

    34. [34]

      Ooi P C, Lin J, Kim T W, et al. Org. Electron., 2016, 8:379-383

    35. [35]

      Yang K Y, Li F S, Veeramalai C P, et al. Appl. Phys. Lett., 2017, 110:083102  doi: 10.1063/1.4976709

    36. [36]

      Zhao J, Cao M H, Cheng B C, et al. J. Mater. Chem. C, 2015, 3(11):2471-2478  doi: 10.1039/C4TC02776K

    37. [37]

      Shi H P, Zheng J P, Cheng B C, et al. J. Mater. Chem. C, 2017, 5:228-237

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(0)
  • Abstract views(1022)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return