Citation: ZHAO Di, ZHANG Bo, DUAN Zhao-Juan, LI Ai-Chang. Ag2S/Ag3PO4/Ni Thin Films: Preparation and Photocatalytic Activity for Rhodamine B[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2158-2164. doi: 10.11862/CJIC.2016.276 shu

Ag2S/Ag3PO4/Ni Thin Films: Preparation and Photocatalytic Activity for Rhodamine B

  • Corresponding author: LI Ai-Chang, 
  • Received Date: 28 July 2016
    Available Online: 8 October 2016

    Fund Project:

  • Ag2S/Ag3PO4/Ni composite thin films were prepared by electrochemical method. The surface morphology, phase structure, optical characteristics and band structure of the thin film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), respectively. Its photocatalytic properties and stability were evaluated with rhodamine B (RhB) as a model compound. Using a method of adding active species scavenger to the solution, mechanism of photocatalytic degradation of the film was explored. The results show that the Ag2S/Ag3PO4/Ni thin film is composed of uniform spherical nanoparticles. The photocatalytic activity of the as-prepared Ag2S/Ag3PO4/Ni thin film was higher than those of pure Ag3PO4/Ni thin film and Ag2S/Ni thin film respectively. The film maintains nearly 100% of their corresponding initial photocatalytic activity after 6 cycles. Furthermore, the photodegradation mechanism of the composite films for RhB under the visible light was preliminary proposed.
  • 加载中
    1. [1]

      [1] Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995,95(1):69-96

    2. [2]

      [2] Szabo-Bardos E, Zsilak Z, Horvath O. Prog. Colloid Polym. Sci., 2008,135:21-28

    3. [3]

      [3] Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001,293:269-271

    4. [4]

      [4] Addamo M, Augugliaro V, Garc E, et al. Catal. Today, 2005, 107/108:612-618

    5. [5]

      [5] JIN Chao(金超), QIN Yao(秦瑶), YANG Jin-Hu(杨金虎). Prog. Chem.(化学进展), 2014,26(2/3):225-233

    6. [6]

      [6] YAN Xue-Hua(严学华), GAO Qing-Xia(高庆侠), YANG Xiao-Fei(杨小飞), et al. J. Chin. Ceram. Soc.(硅酸盐学报), 2013,10(41):1354-1365

    7. [7]

      [7] Martin D J, Liu G G, Moniz S J A, et al. Chem. Soc. Rev., 2015,44(50):7808-7828

    8. [8]

      [8] Zhang L L, Zhang H C, Liu Y, et al. New J. Chem., 2012,36(8):1541-1544

    9. [9]

      [9] Shen K, Gondal M A, Siddique R G, et al. Chin. J. Catal., 2014,5(1):78-84

    10. [10]

      [10] Yi Z G, Ye J H, Kikugawa N, et al. Nat. Mater., 2010,9(7):559-564

    11. [11]

      [11] Bi Y P, Hu H Y, Ye J H, et al. Chem. Commun., 2012,48(31):3748-3750

    12. [12]

      [12] Bi Y P, Ouyang S, Ye J H, et al. Phys. Chem. Chem. Phys., 2011,13(21):10071-10075

    13. [13]

      [13] ZHU Sui-Yi(朱遂一), XU Dong-Fang(徐东方), FANG Shuai (方帅), et al. Chem. J. Chinese Universities(高等学校化学学报), 2014,35(6):1286-1292

    14. [14]

      [14] Cao J, Luo B D, Lin H L, et al. J. Hazard. Mater., 2012,4(217/218):107-115

    15. [15]

      [15] Ma P Y, Yu H J, Yu Y, et al. Phys. Chem. Chem. Phys., 2016,18(5):3638-3643

    16. [16]

      [16] LI Ai-Chang(李爱昌), ZHAO Di(赵娣), LIU Pan-Pan(刘盼盼), et al. Chinese J. Nonferrous Met.(中国有色金属学报), 2015,25(8):2196-2204

    17. [17]

      [17] ZHAO Kai-Yuan(赵凯元), WANG Qing(王清). Phys. Test. Chem. Anal. Part B:Chem. Anal.(理化检验:化学分册), 2007,43(1):45-50

    18. [18]

      [18] LI Ai-Chang(李爱昌), ZHU Ning-Ning(朱拧拧),LI Jing-Hong(李京红), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015,31(4):681-688

    19. [19]

      [19] Jiang D L, Chen L L, Xie J M, et al. Dalton Trans., 2014, 43:4878-4885

    20. [20]

      [20] LIU Jian-Xin(刘建新), WANG Yun-Fang(王韵芳), WANG Ya-Wen(王雅文), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2014,30(4):729-737

    21. [21]

      [21] Tang J T, Gong W, Cai T J, et al. RSC Adv., 2013,3(8):2543-2547

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(0)
  • Abstract views(305)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return