Citation: BAI Wen-Jing, LI Yun, CAO Da-Li, WU Yan-Fei, LIANG Yun-Xiao. Immobilization of Pseudomonas Fluorescens Lipase on PDA/SiO2 Macroporous Composite[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1973-1980. doi: 10.11862/CJIC.2016.261 shu

Immobilization of Pseudomonas Fluorescens Lipase on PDA/SiO2 Macroporous Composite

  • Corresponding author: LIANG Yun-Xiao, 
  • Received Date: 19 May 2016
    Available Online: 7 October 2016

    Fund Project:

  • A large-sized macroporous SiO2 was prepared via a polymer template with three-dimensional (3D) skeletal structure and it was surface functionalized with polydopamine (PDA) by controlling the in situ polymerization of dopamine in its micro-channels to obtain the macroporous composite polydopamine/SiO2 (PDA/SiO2). Samples were characterized by SEM, EDX, MIP, BET, TG-DTA and FTIR. PDA/SiO2 was used to immobilize pseudomonas fluorescens lipase (PFL), immobilization conditions were optimized, and the properties of immobilized and free PFL were studied. The results show that the macroporous SiO2 has 3D continuous pass-through pore structure, the pore sizes are in the range of 300~500 nm. After modification with PDA, the pore walls of the resulting PDA/SiO2 are composed of PDA and SiO2 composite nano-film. The best activity recovery of immobilized lipase is 246% under conditions of immobilizing time of 14 h, pH of 8 and initial PFL concentration 0.4 mg·mL-1. Compared with free PFL, the optimum working temperature and pH ranges of immobilized PFL are both widened, and the thermal stability of immobilized PFL is improved significantly. Immobilized PFL has good operational and storage stabilities. The Km of immobilized PFL is lower than that of free PFL, suggesting a better affinity capacity between PFL and substrate.
  • 加载中
    1. [1]

      [1] Jaeger K E, Eggert T. Curr. Opin. Biotechnol., 2002,13:390-397

    2. [2]

      [2] Fernandez-Lafuente R. J. Mol. Catal. B:Enzym., 2010,62: 197-212

    3. [3]

      [3] Maciejewski M, Pótorak K, Kaminska J E. J. Mol. Catal. B: Enzym., 2010,62(3/4):248-256

    4. [4]

      [4] Osborn H T, Akoh C C. J. Food Sci., 2002,67(7):2480-2485

    5. [5]

      [5] Athawale V, Manjrekar N, Athawale M. J. Mol. Catal. B: Enzym., 2001,16:169-173

    6. [6]

      [6] Lima L N, Oliveira G C, Rojas M J, et al. J. Ind. Microbiol. Biotechnol., 2015,42:523-535

    7. [7]

      [7] Hasan F, Shah A A, Hameed A. Enzyme Microb. Technol., 2006,39:235-251

    8. [8]

      [8] Mateo C, Palomo J M, Fernandez-Lorente G, et al. Enzyme Microb. Technol., 2007,40:1451-1463

    9. [9]

      [9] WANG Lei(王磊), CHEN Cheng(陈诚), TIAN Mei-Juan (田美娟), et al. Chinese J. Inorg. Chem. (无机化学学报), 2013,29(4):677-688

    10. [10]

      [10] Abdallah N H, Schlumpberger M, Gaffney D A, et al. J. Mol. Catal. B:Enzym., 2014,108:82-88

    11. [11]

      [11] Monsan P. J. Mol. Catal., 1977,3(78):371-384

    12. [12]

      [12] Hudson S, Cooney J, Magner E. Angew. Chem. Int. Ed., 2008, 47:8582-8594

    13. [13]

      [13] YANG Hong-Bin(杨洪斌), CHEN Qi(陈奇), SONG Li (宋鹂), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23(1):164-168

    14. [14]

      [14] Li Y, Gao F, Wei W, et al. J. Mol. Catal. B:Enzym., 2010, 66:182-189

    15. [15]

      [15] Jiang Y J, Wang Y P, Wang H, et al. New J. Chem., 2015, 39:978-984

    16. [16]

      [16] LI Yun(李云), LIU Xiao-Zhen(刘晓贞), LIANG Yun-Xiao (梁云霄). Acta Materiae Compositae Sinica (复合材料学报), 2016,33(3):634-642

    17. [17]

      [17] Lee H, Scherer N F, Messersmith P B. Proc. Natl. Acad. Sci. USA, 2006,103:12999-13003

    18. [18]

      [18] Lee H, Dellatore S M, Miller W M, et al. Science, 2007, 318:426-430

    19. [19]

      [19] Chao C, Zhang B, Zhai R, et al. ACS Sustainable Chem. Eng., 2014,2:396-403

    20. [20]

      [20] Ren Y H, Rivera J G, He L H, et al. BMC Biotechnol., 2011, 11:1472-6750

    21. [21]

      [21] Kilcawley K N, Wilkinson M G, Fox P F. Enzyme Microb. Technol., 2002,31:310-320

    22. [22]

      [22] Bradford M M. Ana1. Biochem., 1976,72:248-254

    23. [23]

      [23] Abdullah A Z, Sulaiman N S, Kamaruddin A H. Biochem. Eng. J., 2009,44:263-270

    24. [24]

      [24] Safari M, Ghiaci M, Jafari-Asl M, et al. Appl. Surf. Sci., 2015,342:26-33

    25. [25]

      [25] Netto C G C M, Andrade L H, Toma H E. Tetrahedron: Asymmetry, 2009,20:2299-2304

    26. [26]

      [26] Liu J, Guo H T, Zhou Q B, et al. J. Mol. Catal. B:Enzym., 2013,96:96-102

    27. [27]

      [27] TAO Wei-Hong(陶维红), YANG Li-Rong(杨立荣), XU Gang(徐刚), et al. Chem. Ind. Eng. Prog.(化工进展), 2011, 30(7):1584-1590

    28. [28]

      [28] Lee H, Rho J, Messersmith P B. Adv. Mater., 2009,21(4): 431-434

    29. [29]

      [29] ZHANG Qun(张群), ZHANG Yu-Qi(张育淇), LIU Xiao-Zhen(刘晓贞), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,23(10):2065-2070

    30. [30]

      [30] Lei L, Bai Y X, Li Y F, et al. J. Magn. Magn. Mater., 2009, 321:252-258

    31. [31]

      [31] Park K M, Kwon C W, Choi S J, et al. J. Agric. Food Chem., 2013,61:94219427

    32. [32]

      [32] Lei L, Liu X, Li Y F, et al. Mater. Chem. Phys., 2011,125: 866-871

    33. [33]

      [33] Kanimozhi S, Perinbam K. Mater. Res. Bull., 2013,48:1830-1836

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(0)
  • Abstract views(251)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return