Citation: ZHANG Ying-Xia, MI Chang-Huan, LI Hong-Sen. Electrochemical Properties of Fe(Ⅲ)-Doped Nb2O5 Micro/nano Spheres via Hydrothermal Synthesis[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1905-1910. doi: 10.11862/CJIC.2016.247 shu

Electrochemical Properties of Fe(Ⅲ)-Doped Nb2O5 Micro/nano Spheres via Hydrothermal Synthesis

  • Corresponding author: MI Chang-Huan, 
  • Received Date: 28 March 2016
    Available Online: 19 August 2016

    Fund Project:

  • Fe(Ⅲ)-doped niobium oxide (Fe-Nb2O5) and Nb2O5 were prepared by the one-step hydrothermal route. Both samples were characterized by X-ray diffraction (XRD), electron microscopy(SEM), Transmission electron microscope(TEM) and so on. The results showed that Fe-Nb2O5 and Nb2O5 were orthorhombic phase. Nb2O5 was irregular particle with the wider size distribution of 50~300 nm, and Fe-Nb2O5 was homogeneous micro/nano sphere with the diameter of 1 μm, which assembled from 50 nm sized nano-particles The porous multistage structure could increase the contact interface between electrode materials and electrolyte. Electrochemical analyses showed that Fe-Nb2O5 has the better rate performance and cycle stability with a discharge capacity of 193.2 mAh·g-1 retained up to 100 cycles at 50 and 108.4 mAh·g-1 at 5 A·g-1, and the possible reasons were analyzed.
  • 加载中
    1. [1]

      [1] Wang X, Li G, Chen Z, et al. Adv. Energy Mater., 2011,1(6): 1089-1093

    2. [2]

      [2] Viet AL, Reddy M, Jose R, et al. J. Phys. Chem. C, 2009, 114(1):664-671

    3. [3]

      [3] Kumagai N, Koishikawa Y, Komaba S, et al. J. Electrochem. Soc., 1999,146(9):3203-3210

    4. [4]

      [4] Le Viet A, Reddy M, Jose R, et al. Electrochim. Acta, 2011,56(3):1518-1528

    5. [5]

      [5] Wang Y D, Yang L F, Zhou Z L, et al. Mater. Lett., 2001,49(5):277-281

    6. [6]

      [6] Carniti P, Gervasini A, Marzo M. J. Phys. Chem. C, 2008, 112(36):14064-14074

    7. [7]

      [7] Jose R, Thavasi V, Ramakrishna S. J. Am. Ceram. Soc., 2009,92(2):289-301

    8. [8]

      [8] Chen S G, Chappel S, Diamant Y, et al. Chem. Mater., 2001, 13(12):4629-4634

    9. [9]

      [9] Reichman B, Bard A J. J. Electrochem. Soc., 1981,128:344-346

    10. [10]

      [10] Kodama R, Terada Y, Nakai I, et al. J. Electrochem. Soc., 2006,153(3):A583-A588

    11. [11]

      [11] Wang X, Lee P S. J. Mater. Chem. A, 2015,3(43):21706-21712

    12. [12]

      [12] CAO Yan(曹艳). Iron Steel Vanadium Titanium(钢铁钒钛), 2011,32(3):7-11

    13. [13]

      [13] Wang X, Li G, Tjandra R, et al. RSC Adv., 2015,5(51): 41179-41185

    14. [14]

      [14] Wang L, Ruan B Y, Xu J T, et al. RSC Adv., 2015,5(45): 36104-36107

    15. [15]

      [15] Ge H, Li N, Li D, et al. Electrochem. Commun., 2008,10(7): 1031-1034

    16. [16]

      [16] Wolfenstine J, Allen J L. J. Power Sources, 2008,180(1):582-585

    17. [17]

      [17] Kallel W, Bouattour S, Ferreira L F V, et al. Mater. Chem. Phys., 2009,114(1):304-308

    18. [18]

      [18] Shenouda A Y, Murali K R. J. Power Sources, 2008,176(1): 332-339

    19. [19]

      [19] Li S R, Ge S Y, Qiao Y, et al. Electrochim. Acta, 2012,64: 81-86

    20. [20]

      [20] Park H K. Solid State Ionics, 2005,176(3):307-312

    21. [21]

      [21] Risti M, Popovi S, Musi S. Mater. Lett., 2004,58(21):2658-2663

    22. [22]

      [22] ZHANG Yan(张妍), YU Jian-Qiang(于建强), GAO Xing-Long(高行龙), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(1):141-144

    23. [23]

      [23] HUANG Sheng-Dong(黄东升), CHEN Chao-Feng(陈朝凤), LI Yu-Hua(李玉花), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23(4):738-742

    24. [24]

      [24] ZHANG Xue-Jun(张学军), GAO Pan(高攀), LIU Qing-Ju(柳清菊). Chin. J. Phys.(中国物理学报), 2010,59(7):4930-4938

    25. [25]

      [25] Habibi M H, Mokhtari R. J. Inorg. Organomet. Polym Mater., 2012,22(1):158-165

    26. [26]

      [26] Jiang Z, Tang Y, Tay Q, et al. Adv. Energy Mater., 2013,3(10):1368-1380

    27. [27]

      [27] Marpuga Azat(马尔甫哈·阿扎提), Nyssanbayeva S, Beysen Sadeh(拜山·沙德克). Phys. Eng.(物理与工程), 2014,24(6): 22-25

    28. [28]

      [28] WANG Xiao-Ming(王小明). Thesis for the Doctorate of Huazhong Agricultural University (华中农业大学博士论文). 2015.

    29. [29]

      [29] Augustyn V, Come J, Lowe M A, et al. Nat. Mater., 2013,12(6):518-522

    30. [30]

      [30] Kim J W, Augustyn V, Dunn B. Adv. Energy Mater., 2012,2(1):141-148

    31. [31]

      [31] Kumagai N, Tanno K, Nakajima T, et al. Electrochim. Acta, 1983,28(1):17-22

    32. [32]

      [32] Itagaki M, Yotsuda S, Kobari N, et al. Electrochim. Acta, 2006,51(8):1629-1635

    33. [33]

      [33] Gnanaraj J S, Zinigrad E, Asraf L, et al. Electrochem. Commun., 2003,5(11):946-951

    34. [34]

      [34] Wang Z, Luan D, Hu Y, et al. Energy Environ. Sci., 2012,5: 5252-5258

    35. [35]

      [35] Zheng H, Fang S, Tong Z, et al. J. Mater. Chem. A, 2015,3(23):12476-12481

    36. [36]

      [36] Zhou G W, Wang J, Gao P, et al. Ind. Eng. Chem. Res., 2012,52(3):1197-1204

    37. [37]

      [37] Saravanan K, Ananthanarayanan K, Balaya P. Energy Environ. Sci., 2010,3(7):939-948

    38. [38]

      [38] Gao S, Yang S, Shu J, et al. J. Phys. Chem. C, 2008,112(49): 19324-19328

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(0)
  • Abstract views(514)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return