Citation: LU Ning-Yue, ZHOU Fan, FAN Bin-Bin, LI Rui-Feng. Pt/MIL-101(Cr) for the Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2324-2330. doi: 10.11862/CJIC.2015.314 shu

Pt/MIL-101(Cr) for the Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol

  • Corresponding author: FAN Bin-Bin, 
  • Received Date: 11 June 2015
    Available Online: 20 October 2015

    Fund Project: 国家自然科学基金(No.20971095,21576177) (No.20971095,21576177)山西省回国留学人员科研资助项目(No.2013-047)资助。 (No.2013-047)

  • MIL-101(Cr) supported Pt nanoparticles (Pt/MIL-101(Cr)) catalyst was prepared by a facile impregna-tion method and used as an efficient catalyst for selective hydrogenation of cinnamaldehyde (CAL). The results of XRD, TEM and N2 adsorption and catalytic evaluation showed that Pt loadings greatly influenced the size of the supported nanoparticles on MIL-101(Cr) and the selectivity to cinnamyl alcohol (COL). Pt/MIL-101(Cr) catalyst with a low Pt loading (1.0%) exhibited much higher catalytic activity and COL selectivity in the selective hydrogenation of CAL as compared with Pt nanoparticles supported on other MOFs or inorganic supports, and its activity and selectivity to COL can reach 96.5% and 86.2% under optimized reaction conditions, respectively. The prepared Pt/MIL-101(Cr) catalyst is stable and can be reused at least five times without significant loss in the activity and selectivity. The excellent catalytic performance of Pt/MIL-101(Cr) is greatly related with the unique structure and surface property of MIL-101(Cr) support.
  • 加载中
    1. [1]

      [1] Ma S, Zhou H C. Chem. Commun., 2010,46(1):44-53

    2. [2]

      [2] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012,112(2):869- 932

    3. [3]

      [3] Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev., 2012,41 (15):5262-5284

    4. [4]

      [4] ZHAO Can(赵灿), ZHANG You(张优), XIE Meng-Lin(谢梦 淋), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015,31 (4):781-788

    5. [5]

      [5] Férey G, Mellot-Draznieks C, Serre C, et al. Science, 2005, 309(5743):2040-2042

    6. [6]

      [6] Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009,48(41)48:7502-7513

    7. [7]

      [7] Neri G, Bonaccorsi L, Mercadante L, et al. Ind. Eng. Chem. Res., 1997,36(9):3554-3562

    8. [8]

      [8] Gallezot P, Richard D. Chem. Rev., 1998,40(1/2):81-126

    9. [9]

      [9] Machado B F, Morales-Torres S, Pérez-Cadenas A F, et al. Appl. Catal. A: Gen., 2012,425-426:161-169

    10. [10]

      [10] Mahata N, Gonalves F, Pereira M F R, et al. Appl. Catal. A: Gen., 2008,339(1):159-168

    11. [11]

      [11] Raspolli Galletti A M, Toniolo L, Antonetti C, et al. Appl. Catal. A: Gen., 2012,447-448:49-59

    12. [12]

      [12] YU Jian-Yan(余建雁), SONG Shao-Fei(宋绍飞), YE Su- Fang(叶素芳), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2014,30(2):271-276

    13. [13]

      [13] Han X X, Zhou R X, Yue B H, et al. Catal. Lett., 2006,109 (3/4):157-161

    14. [14]

      [14] Li Y, Zhu P F, Zhou R X. Appl. Surf. Sci., 2008,254(9): 2609-2614

    15. [15]

      [15] Zhang B, Zhang X B, Xu L Y, et al. Reac. Kinet. Mech. Cat., 2013,110(1):207-214

    16. [16]

      [16] Shi J J, Nie R F, Chen P, et al. Chem. Commun., 2013,41: 101-105

    17. [17]

      [17] Guo Z Y, Xiao C X, Maligal-Ganesh R V, et al. ACS Catal., 2014,4(5):1340-1348

    18. [18]

      [18] Galvagno S, Capannelli G, Neri G, et al. J. Mol. Catal., 1991,64(2):237-246

    19. [19]

      [19] Handjani S, Marceau E, Blanchard J, et al. J. Catal., 2011, 282(1):228-236

    20. [20]

      [20] Ramos-Fernández E V, Ferreira A F P, Sepúlveda-Escribano A, et al. J. Catal., 2008,258(1):52-60

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    18. [18]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    19. [19]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    20. [20]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

Metrics
  • PDF Downloads(0)
  • Abstract views(306)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return