Citation: ZHAO Er-Zheng, PENG Tong-Jiang, SUN Hong-Juan, LIU Bo, JI Guang-Fu. Molecular Simulation of Structure of Cetyl Trimethyl Ammonium Bromide Intercalated Graphite Oxide[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 485-492. doi: 10.11862/CJIC.2015.081 shu

Molecular Simulation of Structure of Cetyl Trimethyl Ammonium Bromide Intercalated Graphite Oxide

  • Corresponding author: PENG Tong-Jiang, 
  • Received Date: 27 August 2014
    Available Online: 12 December 2014

    Fund Project: 国家自然科学基金(No.41272051) (No.41272051)西南科技大学博士基金(No.11ZX7135)资助项目。 (No.11ZX7135)

  • The structure changes of C16TAB/GO intercalation compounds about the number of cetyl trimethyl ammonium bromide(C16TAB) molecules were investigated by molecular simulation method. The arrangement modes of C16TAB molecules in the interlayer of GO were discussed, and the simulation results were verified by the experimental data. The simulation results show that the layer spacing of the structural model of GO is 0.849 nm; the layer spacing of C16TAB/GO intercalation compounds increases gradually by five ladderlike style with the increase of the number of C16TAB molecules. The layer spacing of each ladder are 1.56, 1.98, 2.33, 2.76 and 3.40 nm, and the number of C16TAB molecules is up to 28 when the intercalation is saturated. The experimental results show that the layer spacing of C16TAB/GO intercalation compounds increases gradually with the increase of the number of C16TAB molecules and the saturation value is 3.40 nm, so the experimental results are in good agreement with simulation results. The possible arrangement modes of C16TAB molecules in the interlayer of GO are 1~5 layers lateral arrangement or lateral monolayer, paraffin-type monolayer and vertical monolayer, and the optimal arrangement modes of C16TAB molecules in the interlayer of GO are 1~5 layers lateral arrangement according to the result of energy and structure.
  • 加载中
    1. [1]

      [1] Nakajima T, Mabuchi A, Hagiwara R. Carbon, 1988,26(3): 357-361

    2. [2]

      [2] He H, Klinowski J, Forster M, et al. Chem. Phys. Lett., 1998,287(1):53-56

    3. [3]

      [3] Lerf A, He H, Forster M, et al. J. Phys. Chem. B, 1998,102 (23):4477-4482

    4. [4]

      [4] Boukhvalov D W, Katsnelson M I. J. Am. Chem. Soc., 2008, 130(32):10697-10701

    5. [5]

      [5] YANG Jian-Guo(杨建国), NIU Wen-Xin(牛文新), LI Jian-She(李建设), et al. Polym. Mater. Sci. Eng.(高分子材料科学 与工程), 2005,21(5):55-58

    6. [6]

      [6] Mermoux M, Chabre Y, Rousseau A. Carbon, 1991,29(3): 469-474

    7. [7]

      [7] Matsuo Y, Niwa T, Sugie Y. Carbon, 1999,37(6):897-901

    8. [8]

      [8] Xu S, Boyd S A. Environ. Sci. Technol., 1995,29(2):312-320

    9. [9]

      [9] Williams D S, Thomas R K, Castro M A, et al. J. Colloid Interface Sci., 2003,267(2):265-271

    10. [10]

      [10] HAN Zhi-Dong(韩志东), WANG Jian-Qi(王建祺). Chinese J. Inorg. Chem.(无机化学学报), 2003,5(19):459-461

    11. [11]

      [11] Liu Z H, Wang Z M, Yang X J. Langmuir, 2002,18(12):4926-4932

    12. [12]

      [12] Matsuo Y, Miyabe T, Fukutsuka T, et al. Carbon, 2007,45 (5):1005-1012

    13. [13]

      [13] LIN Shun-Jia(林舜嘉), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2013,29(11):2333-2338

    14. [14]

      [14] Hackett E, Manias E, Giannelis E P. J. Chem. Phys., 1998, 108(17):7410-7415

    15. [15]

      [15] Zeng Q H, Yu A B, Lu G Q, et al. Chem. Mater., 2003,15 (25):4732-4738

    16. [16]

      [16] Miroslav P, Pavla C, Dagmar M, et al. J. Colloid Interface Sci., 2001,236(1):127-131

    17. [17]

      [17] Miroslav P, Pavla C, Dagmar M, et al. J. Colloid Interface Sci., 2002,245(1):126-132

    18. [18]

      [18] FU Yi-Zheng(付一政), LIAO Li-Qiong(廖黎琼), LIANG Xiao-Yan(梁晓艳), et al. Polym. Mater. Sci. Eng.(高分子材料 科学与工程), 2013,29(7):175-178

    19. [19]

      [19] Liu B, Sun H J, Peng T J, et al. J. Mol. Model., 2012:1-6

    20. [20]

      [20] Rappé A K, Casewit C J, Colwell K S, et al. J. Am. Chem. Soc., 1992,114(25):10024-10035

    21. [21]

      [21] Frenkel D, Smit B, Translated by WANG Wen-Chuan(汪文 川), ZHOU Jian(周健), CAO Da-Peng(曹大鹏). Understand-ing Molecular Simulation-From Algorithms to Applications (分子模拟-从算法到应用). Beijing: Chemical Industry Press, 2002:329-338

    22. [22]

      [22] FU Ling(傅玲), LIU Hong-Bo(刘洪波), ZOU Yan-Hong(邹 艳红), et al. Carbon(炭素), 2005(4):10-14

    23. [23]

      [23] HUANG Qiao(黄桥), SUN Hong-Juan(孙红娟), YANG Yong-Hui(杨勇辉). Chinese J. Inorg. Chem.(无机化学学 报), 2011,27(9):1721-1726

    24. [24]

      [24] DING Yun-Sheng(丁运生), WANG Seng-Shan(王僧山), ZHA Min(查敏). Acta Phys.-Chim. Sin.(物理化学学报), 2006,22(5):548-551

    25. [25]

      [25] Le P L, Duchet J, Sautereau H, et al. Macromol. Symp., 2003,194(1):155-160

    26. [26]

      [26] LIN Bao-Hui(林宝辉), GAO Mang Mang-Lai(高芒来). Acta Phys.-Chim. Sin.(物理化学学报), 2005,21(7): 808-812

    27. [27]

      [27] LI Lin-Jiang(李林江), HU Dong-Hu(胡栋虎), JI Ling-Li(季 伶俐), et al. J. Funct. Mater.(功能材料), 2011,42(B02):168-172

    28. [28]

      [28] ZOU Yan-Hong(邹艳红), LIU Hong-Bo(刘洪波), FU Ling (傅玲), et al. Journal of the Chinese Ceramic Society(硅酸 盐学报), 2006,34(3):318-323

    29. [29]

      [29] ZHOU Gong-Du(周公度). Structural Chemistry of Inorganic (无机结构化学). Beijing: Science Press, 1984:118-119

    30. [30]

      [30] He H P, Frost R L, Bostrom T, et al. Appl. Clay Sci., 2006, 31(3):262-271

    31. [31]

      [31] Zhu J X, He H P, Guo J G, et al. Chin. Sci. Bull., 2003,48 (4):368-372

    32. [32]

      [32] Williams D S, Thomas R K. J. Colloid Interface Sci., 2002, 255:303-311

    33. [33]

      [33] Slade P G, Gates W P. Appl. Clay Sci., 2004,25(1):93-101

    34. [34]

      [34] CHEN De-Fang(陈德芳), WANG Zhong(王重). J. Xi'an Jiaotong University(西安交通大学学报), 2000,34(8): 92-95

    35. [35]

      [35] Vaia R A, Teukolsky R K, Giannelis E P. Chem. Mater., 1994,6(7):1017-1022

    36. [36]

      [36] Vahedi F A, Guggenheim S. Clays Clay Miner., 1997,45(6): 859-866

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(0)
  • Abstract views(509)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return