Citation: LIU Hai-Rui, FANG Li-Yu, JIA Wei, JIA Hu-Sheng. Fabrication of ZnS Nanoparticles with Enhanced Photocatalytic Activity by Hydrothermal Method[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 459-464. doi: 10.11862/CJIC.2015.074 shu

Fabrication of ZnS Nanoparticles with Enhanced Photocatalytic Activity by Hydrothermal Method

  • Corresponding author: LIU Hai-Rui, 
  • Received Date: 19 June 2014
    Available Online: 5 January 2015

    Fund Project: 国家自然科学基金(NO.50432030、U1304110)资助项目。 (NO.50432030、U1304110)

  • Under the role of CTAB, different size ZnS spherical-like particles were fabricated by hydrothermal method. The crystal structure, morphology, composition and optical property of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray energy spectrum (EDS), UV-Vis absorption spectrum and photoluminescence spectrum (PL). Photocatalytic activities were evaluated by degradation of MB solution. The results show that ZnS nanoparticles were formed by aggregation of crystal nucleus under the role of CTAB. With the increase of reaction time, the size of ZnS particles increased to 500 nm, however, the crystal structure of product has no change. With the increase of particle size, the UV-Vis absorption peak of samples shifted from 418 to 362 nm and the PL intensity further increased. Finally, the photocatalytic activity presented that fabricated ZnS nanoparticles with reaction time 12 h showed best photcatalytic performance.
  • 加载中
    1. [1]

      [1] Suyver J F, Wuister S F, Kelly J J, et al. Nano Lett., 2001,1 (8):429-433

    2. [2]

      [2] Zhang Q Y, Su K, Chan-Park M B, et al. Acta Biomater., 2014,10(3):1167-1176

    3. [3]

      [3] Zhang S J. Ceram. Int., 2014,40(3):4553-4557

    4. [4]

      [4] Park J Y, Park S J, Lee J H, et al. Mater. Lett., 2014,121:97 -100

    5. [5]

      [5] Sun J Q, Hao E C, Sun Y P, et al. Thin Solid Films, 1998, 327:528-531

    6. [6]

      [6] Yu W, Fang P F, Wang S J, et al. Appl. Surf. Sci., 2009,255 (11):5709-5713

    7. [7]

      [7] Hemant P S, Diptesh P, Narendra P, et al. Mater. Lett., 2008,62(17/18):2700-2703

    8. [8]

      [8] Saoudi R, Moussaoui M, Tonchev S, et al. J. Quant. Spectrosc. Radiat. Transfer, 2012,113(18):2499-2502

    9. [9]

      [9] Po C L, Chi C H, Tai C L. J. Solid State Chem., 2012,194: 282-285

    10. [10]

      [10] Nagamani K, Revathi N, Prathap P, et al. Curr. Appl. Phys., 2012,12(2):380-384

    11. [11]

      [11] Zhang W H, Zhang W D. Mater. Lett., 2013,98(1):5-7

    12. [12]

      [12] Dong F F, Guo Y P, Jiang K, et al. Mater. Lett., 2013,97:59 -63

    13. [13]

      [13] Wang X J, Wan F Q, Jiang K, et al. Mater. Charact., 2008, 59:1765-1770

    14. [14]

      [14] WU Xiao(吴晓), WANG Hao(汪浩). Chinese J. Inorg. Chem. (无机化学学报), 2010,26(3):453-458

    15. [15]

      [15] Min X B, Yuan C Y, Chai L Y, et al. Miner. Eng., 2013,40: 16-23

    16. [16]

      [16] Mehta S K, Kumar S J. Mater. Chem. Phys., 2011,131(1/2): 94-101

    17. [17]

      [17] Michael B, Katarzyna M, Adam S, et al. Sol. Energy Mater. Sol. Cells, 2009,93(5):662-666

    18. [18]

      [18] Ma H C, Han J H, Fu Y H, et al. Appl. Catal. B: Environ., 2011,102(3/4):417-423

    19. [19]

      [19] Tran T Q H, Ngo D T, Stephen M, et al. Opt. Mater., 2011, 33(3):308-314

    20. [20]

      [20] Sadasivam S, Rajamanickam T S, Nagarajan G S, et al. Superlattices Microstruct., 2012,51(1):73-79

    21. [21]

      [21] Zhang Y, Dang X Y, Jin J, et al. Appl. Surf. Sci., 2010,256 (22):6871-6875

    22. [22]

      [22] Nam V, Tuan N T, Trung D Q, et al. Mater. Lett., 2010,64 (14):1650-1652

    23. [23]

      [23] ZHANG Hai-Ming(张海明), WANG Zhi-Jian(王之建), ZHANG Li-Gong(张力功) et al. J. Inorg. Mater.(无机材料 学报), 2002,17(6):1148-1150

    24. [24]

      [24] Pradhan N, Peng X G. J. Am. Chem. Soc., 2007,129:3339-3347

    25. [25]

      [25] Shanmugam N, Cholan S, Kanndasan N, et al. Solid State Sci., 2014,28:55-60

    26. [26]

      [26] Panthi G, Barakat N A M, Park M, et al. J. Ind. Eng. Chem., 2014,2:35-39

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    9. [9]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(1)
  • Abstract views(225)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return