Citation: WU Guang-Li, ZHAO Xiao-Hua, LI Meng, LI Zhen-Zhen, LI Cai-Zhu, LOU Xiang-Dong. Controllable Synthesis of Hierarchical Structure ZnO Photocatalysts with Different Morphologies via Sol-Gel Assisted Hydrothermal Method[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 61-68. doi: 10.11862/CJIC.2015.004 shu

Controllable Synthesis of Hierarchical Structure ZnO Photocatalysts with Different Morphologies via Sol-Gel Assisted Hydrothermal Method

  • Corresponding author: LOU Xiang-Dong, 
  • Received Date: 17 June 2014
    Available Online: 26 September 2014

    Fund Project: 国家自然科学基金(No.21073055)资助项目 (No.21073055)

  • Hierarchical structure ZnO samples with different morphologies were synthesized by sol-gel assisted hydrothermal method, using Zn(NO3)2·6H2O, citric acid and NaOH as raw materials. Nanosheets flower-like ZnO, nanorods flower-like ZnO and spind-like ZnO microstructures could be synthesized only by controlling the time of hydrothermal reaction. The as-prepared samples were characterized by XRD, SEM, UV-Vis, DRS, photoluminescence (PL) and low temperature nitrogen adsorption-desorption. The formation mechanism of different morphologies of ZnO hierarchical structures was proposed. The photocatalytic activities of the samples were evaluated by the degradation of Reactive Blue 14 (KGL) under UV irradiation. The results demonstrated that different morphologies of ZnO samples all showed good photocatalytic performance, with the degradation degree of KGL exceeding 78% after 120 min. But the sample prepared at 120 ℃ for 4 h exhibited superior photocatalytic activity to other ZnO samples, and the degradation rate of KGL can reach 99%. It might be attributed to the morphology, larger specific surface area, more oxygen surface defect and surface polarity.
  • 加载中
    1. [1]

      [1] Gupta V K, Ali I, Saleh T A, et al. RSC Adv., 2012,2(16): 6380-6388

    2. [2]

      [2] Lang X J, Chen X D, Zhao J C. Chem. Soc. Rev., 2014,43 (1):473-486

    3. [3]

      [3] Lu Y C, Wang L L, Wang D J, et al. Mater. Chem. Phys., 2011,129(1):281-287

    4. [4]

      [4] Xu L P, Hu Y L, Pelligra C, et al. Chem. Mater., 2009,21 (13):2875-2885

    5. [5]

      [5] Liu Y, Kang Z H, Chen Z H, et al. Cryst. Growth Des., 2009, 9(7):3222-3227

    6. [6]

      [6] Lai Y L, Meng M, Yu Y F. Appl. Catal. B: Environ., 2010,100(3):491-501

    7. [7]

      [7] WU Zhen-Yu(吴振玉), LI Feng-Jie(李奉杰), LI Cun(李村), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(10): 2091-2098

    8. [8]

      [8] CAI Feng-Shi(蔡锋石), WANG Jing(王菁), SUN Yue(孙悦), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(6): 1116-1120

    9. [9]

      [9] Sun Y, Fuge G M, Fox N A, et al. Adv. Mater., 2005,17(20): 2477-2481

    10. [10]

      [10] Sun J H, Dong S Y, Wang Y K, et al. J. Hazard. Mater., 2009,172(2/3):1520-1526

    11. [11]

      [11] Sun Y G, Hu J Q, Wang N, et al. New J. Chem., 2010,34 (4):732-737

    12. [12]

      [12] Zhang H, Yang D R, Li S Z, et al. Mater. Lett., 2005,59 (13):1696-1700

    13. [13]

      [13] Zhao X H, Li M, Lou X D. Adv. Powder Technol., 2014,25 (1):372-378

    14. [14]

      [14] Zhao X H, Lou F J, Li M, et al. Ceram. Int., 2014,40(4): 5507-5514

    15. [15]

      [15] Chen M, Wang Z H, Han D M, et al. Sens. Actuators B: Chem., 2011,157(2):565-574

    16. [16]

      [16] Umar A, Chauhan M S, Chauhan S, et al. J. Colloid Interface Sci., 2011,363(2):521-528

    17. [17]

      [17] Wahab R, Mishra A, Yun S I, et al. Biomass Bioenerg, 2012,39:227-236

    18. [18]

      [18] KAN Bao-Tao(阚保涛), WANG Xin(汪鑫), YE Chun-Li (叶春丽), et al. Chinese J. Lumin.(发光学报), 2012,32(12): 1205-1209

    19. [19]

      [19] Stankovi A, Stojanovi Z, Veselinovi L, et al. Mater. Sci. Eng. B, 2012,177(13):1038-1045

    20. [20]

      [20] Yousefi R, Kamaluddin B. Appl. Surf. Sci., 2009,255(23): 9376-9380

    21. [21]

      [21] Muthirulan P, Devi C N, Sundaram M M. Ceram. Int., 2014, 40(4):5945-5957

    22. [22]

      [22] Wang H H, Xie C S, Zhang W, et al. J. Hazard. Mater., 2007,141(3):645-652

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    9. [9]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

Metrics
  • PDF Downloads(0)
  • Abstract views(530)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return