Citation: ZHAO Dan, ZHAO En-Xiao, XIN Xia, LI Fei-Fei. Single-Crystal Structure and Bond Structure of Scheelite-Like KGd(MoO4)2[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 1143-1150. doi: 10.11862/CJIC.2014.101 shu

Single-Crystal Structure and Bond Structure of Scheelite-Like KGd(MoO4)2

  • Received Date: 7 June 2013
    Available Online: 8 November 2013

    Fund Project: 国家自然科学基金(No.21201056) (No.21201056)河南省科技厅(No.122300410418)资助项目。 (No.122300410418)

  • High-temperature reaction of Gd2O3, K2CO3 and MoO3 leads to a potassium lanthanide molybdate, namely, KGd(MoO4)2. The structure of KGd(MoO4)2 was investigated by means of single-crystal X-ray diffraction at room temperature. Structural analysis results show that it crystallizes in triclinic space group P1 with a=0.52923(6) nm, b=0.69210(6) nm, c=1.06889(7) nm, α=75.79(8)°, β=76.79(5)°, γ=67.60(4)°, Z=2 and R1(all data)=0.0258. K and Gd atoms occupy their respective crystallographic distinct sites. No occupancy disorder and structural modulation exist in the structure. Furthermore, the obtained crystallographic data are used to calculate the band structure, density of states and dielectric constants with the density functional theory method. The results tend to support the experimental data.
  • 加载中
    1. [1]

      [1] (a)Nesterenko N M. Phys. Solid. State, 2000, 42:184-188

    2. [2]

      (b)Kharchenko N F, Kharchenko Yu N. Low. Temp. Phys., 1998, 24:689-699

    3. [3]

      (c)Morozov V A, Arakcheeva A V, Chapuis G, et al. Chem. Mater., 2006, 18:4075-4082

    4. [4]

      (d)Pashchenko V A, Jansen A G M, Kobets M I, et al. Phys. Rev. B, 2000, 62:1197-1202

    5. [5]

      (e)Mczka M, Kojima S, Hanuza J. J. Phys. Soc. Jpn., 1999, 68:1948-1953

    6. [6]

      (f)Galceran M, Pujol M C, Aguilo M. J. Sol-gel. Sci. Technol., 2007, 42:79-88

    7. [7]

      (g)Silvestrea O, Pujola M C, Soléa R, et al. Mat. Sci. Eng. B-Solid, 2008, 146:59-64

    8. [8]

      [2] (a)Sillen L G, Nylander A L. Arkiv. Foer. Kemi, Mineralogi. Och. Geologi., 1943, 17:27-33

    9. [9]

      (b)Dickinson R G. J. Am. Chem. Soc., 1920, 42:85-93

    10. [10]

      [3] Klevtsova R F. Crystallogr. Rep.(Kristallografiya), 1975, 20: 746-750

    11. [11]

      [4] Egorova A N, Maier A A, Nevskii N N, et al. Izve. Akad. Nauk. SSSR, Neorg. Mater., 1982, 18:2036-2038

    12. [12]

      [5] Klevtsova R F, Klevtsov P V. Crystallogr. Rep.(Kristallogra-fiya), 1970, 15:466-470

    13. [13]

      [6] Klevtsova R F, Vinokurov V A, Klevtsov P V. Crystallogr. Rep.(Kristallografiya), 1972, 17:284-288

    14. [14]

      [7] Klevtsova R F, Kozeeva L P, Klevtsov P V. Crystallogr. Rep. (Kristallografiya), 1974, 19:89-94

    15. [15]

      [8] Klevtsova R F, Borisov S V. Dokl. Akad. Nauk. SSSR, 1967, 177:1333-1336

    16. [16]

      [9] Chaninova S D, Kuznetsov V P, Lakin E E, et al. Ferroele-ctrics, 1996, 175:85-89

    17. [17]

      [10] (a)Arakcheeva A, Chapuis G. Acta Cryst., 2008, B64:12-25

    18. [18]

      (b)Morozov V A, Arakcheeva A V, Chapuis G, et al. Chem. Mater., 2006, 18:4075-4082

    19. [19]

      (c)Arakcheeva A, Pattison P, Chapuis G, et al. Acta Cryst., 2008, B64:160-171

    20. [20]

      [11] (a)Lazoryak B. X-ray Powder Diffraction Laboratory of Chem-istry Technology, Moscow State University, Russia, ICDD Grant-in-Aid, 2001.

    21. [21]

      (b)Wanklyn B M, Wondre F R. J. Cryst. Growth., 1978, 43: 93-100

    22. [22]

      (c)Savel'eva M V, Shakno I V, Plyushchev V E, et al. Russ. J. Inorg. Chem., 1970, 15:425-429

    23. [23]

      [12] (a)Rigaku. Crystal Clear. Rigaku Corporation, Tokyo, Japan., 2004.

    24. [24]

      (b)Higashi, T. ABSCOR. Rigaku Corporation, Tokyo, Japan, 1995.

    25. [25]

      [13] (a)Palatinus L, Chapuis G. J. Appl. Crystallogr., 2007, 40: 786-790

    26. [26]

      (b)PetČíČek V, Dušek M, Palatinus L. Jana 2006, The Crys-tallographic Computing System, Institute of Physics, Praha, Czech Republic, 2006.

    27. [27]

      [14] (a)Segall M, Linda P, Probert M, et al. Materials Studio CASTEP, Version 2.2; San Diego, CA: Accelrys, Inc., 2002.

    28. [28]

      (b)Segall M, Linda P, Probert M, et al. J. Phys.: Condens. Matter., 2002, 14:2717-2744

    29. [29]

      [15] Hamann D R, Schluter M, Chiang C. Phys. Rev. Lett., 1979, 43:1494-1497

    30. [30]

      [16] Macdonald J R, Brachman M K. Rev. Mod. Phys., 1956, 104:393-422

    31. [31]

      [17] Brown I D. J. Appl. Cryst., 1996, 29:479-480

    32. [32]

      [18] (a)Chen Q J, Qin L J, Feng Z Q, et al. J. Rare Earths, 2011, 29(9):843-848

    33. [33]

      (b)Yi L H, Zhou L Y, Wang Z L, et al. Curr. Appl. Phys., 2010, 10(1):208-213

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(0)
  • Abstract views(411)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return