Citation: DONG Jin-Kuang, XU Hai-Yan, CHEN Chen. Influence of Deposition Temperature on Growth Process and Opto-electronic Performance of Cu2O Thin Films[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 689-695. doi: 10.11862/CJIC.2014.062 shu

Influence of Deposition Temperature on Growth Process and Opto-electronic Performance of Cu2O Thin Films

  • Received Date: 29 July 2013
    Available Online: 9 October 2013

    Fund Project: 国家自然科学基金(No.20901001) (No.20901001)教育部(No.2011075) (No.2011075)安徽省教育厅(No.KJ2009B133)资助项目。 (No.KJ2009B133)

  • The nanocrystallite cuprous oxide (Cu2O) thin films with tunable crystallite size were prepared by a one-step chemical bath deposition (CBD) method, where copper sulfate was used as the copper precursor. The influence of deposition temperature on structure, crystallite size, nucleation site density, film thickness and opto-electronic properties of the thin films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis spectroscopy. The results reveal that the crystallite size, film thickness and band gap of Cu2O thin films vary in the range of 33~51 nm, 392~556 nm and 2.47~2.61 eV, respectively, with the deposition temperature change in the range of 60~90 ℃. In addition, the absorption edges of UV-Vis transmittance spectra are blue-shifted apparently with the decrease in crystallite size. Meanwhile, the growth process and the mechanism for the varied nucleation site density and particle size of Cu2O thin films were also discussed.
  • 加载中
    1. [1]

      [1] Sahoo S, Husale S, Colwill B, et al. ACS Nano, 2009,3(12): 3935-3944

    2. [2]

      [2] de Jongh P E, Vanmaekelbergh D, Kelly J J. J. Electrochem. Soc., 2000,147(2):486-489

    3. [3]

      [3] ZHU Hong-Fei(朱红飞), CHEN Qian-Wang(陈乾旺), NIU He-Lin(牛和林), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2004,10(20):1172-1176

    4. [4]

      [4] Hara M, Kondo T, Komoda M, et al. Chem. Commun., 1998, 7(3):357-358

    5. [5]

      [5] Park J C, Kim J, Kwon H, et al. Adv. Mater., 2009,21(7): 803-807

    6. [6]

      [6] Xiang J Y, Tu J P, Huang X H, et al. J. Solid. State. Electr., 2008,12(7-8):941-945

    7. [7]

      [7] Musa A O, Akomolafe T, Carter M J. Sol. Energy Mater. Sol. Cells., 1998,51(3-4):305-316

    8. [8]

      [8] Rai B P. Solar Cells, 1988,25(3):265-272

    9. [9]

      [9] Jeong S H, Aydil E S. J. Cryst. Growth, 2009,311(17):4188-4192

    10. [10]

      [10] Akimoto K, Ishizuka S, Yanagita M, et al. Solar Energy, 2006,80(6):715-722

    11. [11]

      [11] Balamurugan B, Mehta B R. Thin Solid Films, 2001,396(1-2):90-96

    12. [12]

      [12] Sungping S, Cheng C L. Mater. Res. Bull., 2008,43(10): 2687-2696

    13. [13]

      [13] Shang W, Shi X, Zhang X, et al. Appl. Phys. A, 2007,87(1): 129-135

    14. [14]

      [14] Ahirrao P B, Sankapal B R, Patil R S. J. Alloys Compd., 2011,509(18):5551-5554

    15. [15]

      [15] Toshikazu N, Takayuki Y, Nobuyoshi M, et al. Thin Solid Films, 2004,467(1-2):43-49

    16. [16]

      [16] Siegfried M J, Choi K S. Adv. Mater, 2004,16(19):1743-1746

    17. [17]

      [17] WANG Hao(汪浩), XU Hai-Yan(徐海燕), YAN Hui(严辉). J. Funct. Mater.(功能材料), 2006,1(3):13-18

    18. [18]

      [18] Aref A A, Xiong L B, Yan N N, et al. Mater. Chem. Phys., 2011,127(3):433-439

    19. [19]

      [19] Xiong L, Yu H, Yang H, et al. Thin Solid Films, 2010,518 (23):6738-674

    20. [20]

      [20] Lare Y, Godoy A, Cattin L, et al. Appl. Surf. Sci., 2009,255 (13/14):6615-6619

    21. [21]

      [21] Lokhande C D, Lee E H, Jung K D, et al. Mater. Chem. Phys., 2005,91(1):200-204

    22. [22]

      [22] Xu H Y, Xu S L, Li X D, et al. Appl. Surf. Sci., 2006,252 (12):4091-4096

    23. [23]

      [23] Ahirraoa P B, Sankapalb B R, Patil R S. J. Alloys Compd., 2011,509(18):5551-5554

    24. [24]

      [24] Shishiyanu S T, Shishiyanu T S, Lupan O I. Sensor Actuat B: Chem, 2006,113(1):468-476

    25. [25]

      [25] Li J L, Liu L, Yu Y, et al. Electrochem. Comm., 2004,6(9): 940-943

    26. [26]

      [26] Xu H L, Wang W Z, Zhu W. J. Phys. Chem. B, 2006,110 (28):13829-13834

    27. [27]

      [27] Xu H Y, Dong J K, Chen C. Mater. Chem. Phys., 2013,DOI: 10.1016/j.matchemphys.2013.10.004

    28. [28]

      [28] Radi A, Pradhan D, Sohn Y, et al. ACS Nano, 2010,4(3): 1553-1560

    29. [29]

      [29] Borgohain K, Murase N, Mahamuni S. J. Appl. Phys., 2002, 92(3):1292-1297

    30. [30]

      [30] Singh D P, Singh J, Mishra P R, et al. Bull. Mater. Sci., 2008,31(3):319-325

    31. [31]

      [31] Kuo C H, Chen C H, Huang M H. Adv. Funct. Mater., 2007,17(18):3773-3780

    32. [32]

      [32] Tanaka K, Moritake N, Uchiki H. Sol. Energy Mater. Sol. Cells., 2007,91(13):1199-1201

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    5. [5]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    11. [11]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    12. [12]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    13. [13]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    14. [14]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    15. [15]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    16. [16]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    19. [19]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(269)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return