Citation: DENG Long-Zheng, WU Feng, GAO Xu-Guang, XIE Hai-Ming, YANG Zhi-Wei. Effects of Coating Carbon Aluminum Foil on the Battery Performance[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 770-778. doi: 10.11862/CJIC.2014.047 shu

Effects of Coating Carbon Aluminum Foil on the Battery Performance

  • Corresponding author: WU Feng, 
  • Received Date: 12 July 2013
    Available Online: 25 September 2013

    Fund Project: 国家973项目(No.2009CB220100);动力电池及化学能源材料北京市高等学校工程研究中心开放基金资助课题(2013);高性能二次动力电池及关键材料;技术的合作研究(No.2010DFB63370);面向中美清洁能源合作的电动汽车前沿技术研究(No.2010DFA72760) (No.2009CB220100);动力电池及化学能源材料北京市高等学校工程研究中心开放基金资助课题(2013);高性能二次动力电池及关键材料;技术的合作研究(No.2010DFB63370);面向中美清洁能源合作的电动汽车前沿技术研究(No.2010DFA72760)中央高校基本科研业务费(No.12QNJJ013)资助项目。 (No.12QNJJ013)

  • The LiFePO4-based battery properties were studied by using aluminum foil current collector coated with a conductive carbon film. The main properties of LiFePO4 type battery with 10 Ah capacity were also compared by using common aluminum foil and coating carbon aluminum foil (CCAF) from different providers. The results showed that the using of CCAF current collector not only can improve the cohesiveness between the cathode powder and the current collector but can effectively reduce the contact resistance of the cathode material and the current collector, so as to reduce the direct current resistance (DCR) of the battery, and improve the rate performance of the battery. Compared with using common aluminum foil, the DCR is reduced by about 65% with using the CCAF as current collector. But the specific discharge capacity of cathode material is reduced by 5~10 mAh·g-1. And the 1st efficiency is also reduced by 4%; At large discharge rate of 15C rate, the discharge capacity of the cell with using CCAF is more than about 15% in contrast to the cell with common aluminum foil as a current collector. And at 10Cdischarge rate, the voltage plateau increased by 0.3~0.4 V with CCAF; But the self-discharge ratio of cell with CCAF is higher at room temperature, and its recovery rate of the capacity is also higher; After 500 cycles, the cyclic capability of the cell with using CCAFcan increase by about 2% in contrast to the cell with the common aluminum foil as current collector. But the discharge property at low temperature is not improved by the use of CCAF as current collector.
  • 加载中
    1. [1]

      [1] WU Yu-Ping(吴宇平), WAN Chun-Rong(万春荣), JIANG Chang-Yin(姜长印). Lithium Ion Secondary Batteries(锂离 子二次电池). Beijing: Chemical Industry Publishing House, 2002.

    2. [2]

      [2] Bruce P G. Solid State Ionics, 2008, 179(21/22/23/24/25/26): 752-760

    3. [3]

      [3] Armand M, Tarascon J. M. Nature, 2008, 451(2):652-657

    4. [4]

      [4] Ohzuku T, Brodd R. J. Power Sources, 2007, 174(2):449-456

    5. [5]

      [5] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electr-ochem Soc., 1997, 144(4):1188-1194

    6. [6]

      [6] Whittingham M S. Chem. Rev., 2004, 104(10):4271-4301

    7. [7]

      [7] Yamada A, Hosoya M, Chung S C, et al. J. Power Source, 2003, 119-121(1/2):232-238

    8. [8]

      [8] Chen Z H, Dahn J R. J. Electrochem. Soc., 2002, 149(9): A1184-1189

    9. [9]

      [9] Li Xiang-Yuan(李祥元). Thesis for the Masterate of Central South University(中南大学硕士论文). 2008.

    10. [10]

      [10] Takahashi M, Tobishima S I, Takei K, et. Solid State Ionics, 2002, 148:283-289

    11. [11]

      [11] Gao F, Tang Z Y. Electrochim. Acta, 2008, 53(15):5071-5075

    12. [12]

      [12] XU Meng-Qing(许梦清), ZUO Xiao-Xi(左晓希), LI Wei-Shan(李伟善), et al. Chin. J. Power Source(电源技术), 2006, 30(1):14-17

    13. [13]

      [13] Zhang S S, Xu K, Jow T R. J. Power Sources, 2006, 159(I): 702-707

    14. [14]

      [14] Lian X Z, Ma Z F, Gong Q, et al. Electrochem. Commun., 2008, 10(5):691-694

    15. [15]

      [15] XIE Xiao-Hua(谢晓华), CHEN Li-Bao(陈立宝), XIE Jing-Ying(解晶莹). Chin. J. Power Source(电源技术), 2007, 31 (7):576-577

    16. [16]

      [16] TONG Hui(童汇), HU Guo-Hua(胡国华), HU Guo-Rong(胡 国荣), et al. Chinese J. Inorg. Chem.(无机化学学报), 2006, 22(12):2159-2164

    17. [17]

      [17] Delacourt C, Wurm C, Laffont L, et al. Solid State Ionics, 2006, 177(3-4):333-341

    18. [18]

      [18] ZHANG Qiu-Ming(张秋明), QIAO Yu-Qing(乔玉卿), ZHAO Min-Shou(赵敏寿), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2012, 28(1):67-73

    19. [19]

      [19] Ravet N, Abouimrane A, Armand M, et al. Nature, 2003, 2 (11):702~703

    20. [20]

      [20] Zhuang D G, Zhao X B, Xie J, et al. Acta Physico-Chimica Sinica, 2006, 22(7):840-844

    21. [21]

      [21] LIANG Feng(梁风), DAI Yong-Nian(戴永年), YAO Yao-Chun(姚耀春). Chinese J. Inorg. Chem.(无机化学学报), 2010, 26(9):1675-1679

    22. [22]

      [22] Ong C W, Lin Y K, Chen J S. J. Electrochem. Soc., 2007, 154(6):A527-A533

    23. [23]

      [23] TANG Zhi-Yuan(唐致远), GAO Fei(高飞) XUE Jian-Jun(薛 建军). Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(8): 1415-1420

    24. [24]

      [24] YANG Shu-Ting(杨书廷), LIU Yu-Xia(刘玉霞), YIN Yan-Hong(尹艳红), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2007, 23(7):1165-1168

    25. [25]

      [25] Dominko R, Gaber

    26. [26]

      šcek M, Drofenik J, et al. J. Power Sources, 2003, 119/121:770-773

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(0)
  • Abstract views(787)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return