Citation: Mei Haibo, Márió Remete Attila, Zou Yupiao, Moriwaki Hiroki, Fustero Santos, Kiss Lorand, Soloshonok Vadim A., Han Jianlin. Fluorine-containing drugs approved by the FDA in 2019[J]. Chinese Chemical Letters, ;2020, 31(9): 2401-2413. doi: 10.1016/j.cclet.2020.03.050 shu

Fluorine-containing drugs approved by the FDA in 2019









  • Author Bio: Haibo Mei obtained his B.Sc. in 2009 and Ph.D. in 2014 in organic chemistry from Nanjing University. Then he joined Nanjing University as a research fellow in the area of asymmetric synthesis. In 2018, he moved to Nanjing Forestry University and became an associate professor there. His research interests focus on organic fluorine chemistry, electrochemical synthesis and asymmetric synthesis
    Attila Márió Remete graduated as chemist in 2014 from University of Szeged, Faculty of Science and Informatics. He received his Ph.D. degree at the Institute of Pharmaceutical Chemistry, University of Szeged under the supervision of Prof. Dr. Loránd Kiss in 2019. Since 2018, he is an assistant lecturer at the University of Szeged. His research interests include β-amino acids, fluorine incorporation and selective functionalizations
    Yupiao Zou obtained her B.Sc. in 2018 from Wuhan Institute of Technology. She is currently undergraduate student in the research group of Professor Han at Nanjing Forestry University. Her research focuses on fluorine chemistry
    Hiroki Moriwaki, Ph.D graduated from Kyoto Pharmaceutical University in 1985. Then he joined the Technical section at Manufacturing Department of Hamari Chemicals, Ltd. In 2006 he has been working as a Director, Research & Development Department at Hamari Chemicals, Ltd. From 2010 to 2011 he joined the Institute for Chemical Biology and Drug Discovery (ICB & DD) at Stony Brook University, and has been working to develop a new methodology for the synthesis of tailor-made amino acids derivatives. His specialty is development of a practical synthetic method of the special amino acid and peptide. From 2015, he is a board member of Hamari Chemicals, Ltd. In addition, He is currently serving as a councilor of the Japan peptide Society
    Santos Fustero studied chemistry at the University of Zaragoza, where he obtained his bachelor's degree in 1972. He received his Ph.D. in organic chemistry in 1975 from the same university under the supervision of Profs. Barluenga and Gotor. He carried out postdoctoral studies for two years at Prof. Lehmkuhl's group at the MaxPlanck-Institut für Kohlenforschung in Mülheim/Ruhr, Germany. In 1983, he became an associate professor at the University of Oviedo, and in 1990, he was promoted to a full professor at the University of Valencia. His research interests include organofluorine and medicinal chemistry, organocatalysis, heterocyclic chemistry and new reaction methodologies
    Loránd Kiss completed his Ph.D. in 2002 in the Department of Organic Chemistry at the Faculty of Sciences, Debrecen University (Debrecen, Hungary) under the supervision of Prof. Sándor Antus. In 2003, he joined the research team of Professor Ferenc Fülöp at the Institute of Pharmaceutical Chemistry, University of Szeged (Szeged, Hungary), where he started to work in the area of cyclic β-amino acid chemistry. He followed postdoctoral research in the laboratories of Prof. Norbert De Kimpe at Ghent University (Ghent, Belgium), and Prof. Santos Fustero, University of Valencia. He is currently professor and head of department at the Institute of Pharmaceutical Chemistry, University of Szeged. His scientific interest is directed towards the selective functionalization β-amino acid derivatives and on the synthesis of highly functionalized fluorinated building blocks
    Vadim A. Soloshonok graduated from Kiev State University in 1983 and received his Ph.D. in 1987 from the Ukrainian Academy of Sciences. He is the Ikerbasque Research Professor at the University of Basque Country, San Sebastian, Spain. He is currently serving as a member of the advisory editorial board of the Journal of Fluorine Chemistry, Synthesis Editor of Amino Acids, Editor-inChief of Organic Section of Molecules, Past-Chair of the ACS Fluorine Division; author of 350+ research papers. His current research interests are fluorine chemistry, asymmetric synthesis, self-disproportionation of enantiomers
    Jianlin Han received his Ph.D. in organic Chemistry in 2007 from Nanjing University. He then carried out postdoctoral studies for one year at Texas Tech University. In 2008, he moved to the University of Oklahoma to continue postdoctoral research for nearly one year. In 2009 he took the position of Associate Professor at the Nanjing University. In 2019, he moved to Nanjing Forestry University and became a professor there. His research topics include organic fluorine chemistry, amino acids, radical reaction, and asymmetric synthesis
  • * Corresponding authors.
    ** Corresponding author at: Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.
    E-mail address: kiss.lorand@pharm.u-szeged.hu (L. Kiss), vadym.soloshonok@ehu.es (V.A. Soloshonok), hanjl@njfu.edu.cn(J. Han).
  • Received Date: 6 February 2020
    Revised Date: 8 March 2020
    Accepted Date: 18 March 2020
    Available Online: 19 March 2020

Figures(30)

  • Eleven new fluorine-containing FDA-approved drugs have been profiled and details of their discovery and preparation are discussed. Therapeutic areas include schizophrenia, migraine, multiple sclerosis, insomnia, rheumatoid arthritis, anti-tuberculosis, breast cancer, lymphoma kinase inhibitor, serotonin receptor antagonist. New pharmaceuticals feature four examples of aromatic fluorine, three aromatic CF3 group, three aliphatic CF3 and one compound with aromatic CF3O group. Furthermore, among the new compounds, six are chiral and seven are derived from tailor-made amino acids.
  • 加载中
    1. [1]

      (a) J. Fried, E.F. Sabo, J. Am. Chem. Soc. 75 (1953) 2273-2274;
      (b) J. Fried, E.F. Sabo, J. Am. Chem. Soc. 76 (1954) 1455-1456.

    2. [2]

      (a) C. Heidelberger, N.K. Chaudhuri, P. Danneberg, et al., Nature 179 (1957) 663-666;
      (b) D.B. Longley, D.P. Harkin, P.G. Johnston, Nat. Rev. Cancer 3 (2003) 330-338.

    3. [3]

      D. O'Hagan, J. Fluorine Chem. 131 (2010) 1071-1081.  doi: 10.1016/j.jfluchem.2010.03.003

    4. [4]

      J.A. Tobert, Nat. Rev. Drug Discov. 2 (2003) 517-526.  doi: 10.1038/nrd1112

    5. [5]

      (a) Q.A. Huchet, B. Kuhn, B. Wagner, et al., J. Med. Chem. 58 (2015) 9041-9060;
      (b) B. Jeffries, Z. Wang, H.R. Felstead, et al., J. Med. Chem. 63 (2020) 1002-1031;
      (c) A.D. Wade, A. Rizzi, Y. Wang, D.J. Huggins, J. Chem. Inf. Model. 59 (2019) 2776-2784;
      (d) E.N.G. Marsh, Acc. Chem. Res. 47 (2014) 2878-2886;
      (e) A.A. Berger, J.S. Völler, N. Budisa, B. Koksch, Acc. Chem. Res. 50 (2017) 2093-2103;
      (f) L. Kiss, A.M. Remete, Eur. J. Org. Chem. (2019) 5574-5602;
      (g) L. Kiss, F. Fülöp, Chem. Rec. (2018) 266-281;
      (h) A.M. Remete, M. Nonn, S. Fustero, F. Fülöp, L. Kiss, Tetrahedron 74 (2018) 6367-6418;
      (i) M. Nonn, L. Kiss, M. Haukka, S. Fustero, F. Fülöp, Org. Lett. 17 (2015) 1074-1077;
      (j) J. Liu, Z. Li, H. Mei, V.A. Soloshonok, J.L. Han, ACS Omega 4 (2019) 19505-19512;
      (k) C. Xie, L. Zhang, W. Sha, et al., Org. Lett. 18 (2016) 3270-3273;
      (l) X. Xu, X. Dong, Z. Zhang, et al., Macroheterocycles 12 (2019) 403-408.

    6. [6]

      (a) J. Wang, M. Sánchez-Roselló, J.L. Aceña, et al., Chem. Rev. 114 (2014) 2432-2506;
      (b) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J.L. Aceña, V.A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 116 (2016) 422-518;
      (c) W. Zhu, J. Wang, S. Wang, et al., J. Fluorine Chem. 167 (2014) 37-54;
      (d) Y. Zhu, J.L. Han, J. Wang, et al., Chem. Rev. 118 (2018) 3887-3964;
      (e) H. Mei, J. Han, K.D. Klika, et al., Eur. J. Med. Chem. 186 (2020) 111826;
      (f) N.A. Meanwell, J. Med. Chem. 61 (2018) 5822-5880.

    7. [7]

      H. Mei, J. Han, S. Fustero, et al., Chem. Eur. J. 25 (2019) 11797-11819.  doi: 10.1002/chem.201901840

    8. [8]

      H.A. Blair, Drugs 80 (2020) 417-423.  doi: 10.1007/s40265-020-01271-6

    9. [9]

      A.J. Robichaud, T. Lee, W. Deng, et al., PCT/US2000/016498, 2000.

    10. [10]

      T. Lee, A.J. Robichaud, K.E. Boyle, et al., Bioorg. Med. Chem. Lett. 13 (2003) 767-770.  doi: 10.1016/S0960-894X(02)01028-4

    11. [11]

      P. Li, Q. Zhang, A.J. Robichaud, et al., J. Med. Chem. 57 (2014) 2670-2682.  doi: 10.1021/jm401958n

    12. [12]

      R.E. Davis, C.U. Correll, Expert Rev. Neurother. 16 (2016) 601-614.  doi: 10.1080/14737175.2016.1174577

    13. [13]

      N. Zisapel, Expert Opin, Investig. Drugs 24 (2014) 401-411.

    14. [14]

      J.A. Lieberman, R.E. Davis, C.U. Correll, et al., Biol. Psychiatry 79 (2016) 952-961.  doi: 10.1016/j.biopsych.2015.08.026

    15. [15]

      K.E. Vanover, R.E. Davis, Y. Zhou, et al., Neuropsychopharmacology 44 (2019) 598-605.  doi: 10.1038/s41386-018-0251-1

    16. [16]

      F. Carponi, C. Fabbri, I. Bitter, et al., Eur. Neuropsychopharmacol. 29 (2019) 971-985.  doi: 10.1016/j.euroneuro.2019.06.008

    17. [17]

      I.M. Bell, M.E. Fraley, S.N. Gallicchio, et al., US2010/0122899, 2012.

    18. [18]

      P.R. Holland, P.J. Goadsby, Neurotherapeutics 15 (2018) 304-312.  doi: 10.1007/s13311-018-0617-4

    19. [19]

      P. Martelletti, M.A. Giamberardino, Expert Opin. Pharmacol. 20 (2018) 209-218.

    20. [20]

      R.B. Lipton, D.W. Dodick, J. Ailani, et al., JAMA 322 (2019) 1887-1898.  doi: 10.1001/jama.2019.16711

    21. [21]

      I.M. Bell, M.E. Fraley, S.N. Gallicchio, et al., PCT/US2011/060081, 2012.

    22. [22]

      F. Chen, C. Molinaro, W.P. Wuelfing, et al., PCT/US2013/030692, 2013.

    23. [23]

      K.M. Belyk, E. Cleator, S.C. Kuo, et al., PCT/US2013/030696, 2013.

    24. [24]

      N. Yasuda, E. Cleator, B. Kosjek, et al., Org. Process Res. Dev. 21 (2017) 1851-1858.  doi: 10.1021/acs.oprd.7b00293

    25. [25]

      P. Gergely, B. Nuesslein-Hildesheim, D. Guerini, et al., Brit. J. Pharmacol. 167 (2012) 1035-1047.  doi: 10.1111/j.1476-5381.2012.02061.x

    26. [26]

      S. Pan, N.S. Gray, W. Gao, et al., ACS Med. Chem. Lett. 4 (2013) 333-337.  doi: 10.1021/ml300396r

    27. [27]

      E. Legangneux, A. Gardin, D. Johns, Br. J. Clin. Pharmacol. 75 (2012) 831-841.

    28. [28]

      K. Selmaj, D.K.B. Li, H.P. Hartung, et al., Lancet Neurol. 12 (2013) 756-767.  doi: 10.1016/S1474-4422(13)70102-9

    29. [29]

      R.M. Fryer, A. Muthukumarana, P.C. Harrison, et al., PLoS One 7 (2012) e52985.  doi: 10.1371/journal.pone.0052985

    30. [30]

      Z.T. Al-Salama, Drugs 79 (2019) 1009-1015.  doi: 10.1007/s40265-019-01140-x

    31. [31]

      L. Kappos, A. Bar-Or, B.A.C. Cree, Lancet 391 (2018) 1263-1273.  doi: 10.1016/S0140-6736(18)30475-6

    32. [32]

      U. Glaenzel, Y. Jin, R. Nufer, et al., Drug Metab. Dispos. 46 (2018) 1001-1013.  doi: 10.1124/dmd.117.079574

    33. [33]

      A. Gentile, A. Musella, S. Bullitta, et al., J. Neuroinflamm. 13 (2016) 207.  doi: 10.1186/s12974-016-0686-4

    34. [34]

      C. O'Sullivan, A. Schubart, A.K. Mir, K.K. Dev, J. Neuroinflamm. 13 (2016) 31.  doi: 10.1186/s12974-016-0494-x

    35. [35]

      R. Yamamoto, T. Aoki, H. Koseki, et al., Br. J. Pharmacol. 174 (2017) 2085-2101.  doi: 10.1111/bph.13820

    36. [36]

      Z. Chen, T.M. Doyle, L. Luongo, et al., PNAS 116 (2019) 10557-10562.  doi: 10.1073/pnas.1820466116

    37. [37]

      T. Bobinger, A. Manaenko, P. Burkardt, et al., Stroke 50 (2019) 3246-3254.  doi: 10.1161/STROKEAHA.119.027134

    38. [38]

      S. Pan, W. Gao, N.S. Gray, Y. Mi, Y. Fan, PCT/US2004/015603, 2004.

    39. [39]

      Y. Liu, D. Papoutsakis, E. Roddy, PCT/US2009/068346, 2010.

    40. [40]

      L. Ciszewski, M. de la Cruz, P.H. Karpinski, et al., PCT/US2009/068143, 2010.

    41. [41]

      M. de la Cruz, P.H. Karpinski, Y. Liu, PCT/US2009/068352, 2010.

    42. [42]

      F. Gallou, J.M. Sedelmeier, C. Vogel, PCT/EP2013/052106, 2013.

    43. [43]

      Y. Yoshida, T. Terauchi, Y. Naoe, et al., Bioorg. Med. Chem. 22 (2014) 6071-6088.  doi: 10.1016/j.bmc.2014.08.034

    44. [44]

      Y. Yoshida, Y. Naoe, T. Terauchi, et al., J. Med. Chem. 58 (2015) 4648-4664.  doi: 10.1021/acs.jmedchem.5b00217

    45. [45]

      P.J. Murphy, S. Yasuda, K. Nakai, et al., J. Clin. Pharmacol. 57 (2017) 96-104.  doi: 10.1002/jcph.785

    46. [46]

      P. Murphy, M. Moline, D. Mayleben, et al., J. Clin. Sleep Med. 13 (2017) 1289-1299.  doi: 10.5664/jcsm.6800

    47. [47]

      R. Rosenberg, P. Murphy, G. Zammit, et al., JAMA Netw. Open 2 (2019) e1918254.  doi: 10.1001/jamanetworkopen.2019.18254

    48. [48]

      G.A. Moniz, A.Z. Wilcoxen, F. Benayoud, et al., PCT/US2013/026204, 2013.

    49. [49]

      S. Nakayamada, S. Kubo, S. Iwata, Y. Tanaka, BioDrugs 30 (2016) 407-419.  doi: 10.1007/s40259-016-0190-5

    50. [50]

      M.E.F. Mohamed, H.S. Camp, P. Jiang, et al., Clin. Pharmacokinet. 55 (2016) 1547-1558.  doi: 10.1007/s40262-016-0419-y

    51. [51]

      N. Wishart, M.A. Argiriadi, D.J. Calderwood, et al., WO2011068881, 2011.

    52. [52]

      (a) G.R. Burmester, J.M. Kremer, F. Van den Bosch, et al., Lancet 391 (2018) 2503-2512;
      (b) M.C. Genovese, R. Fleischmann, B. Combe, et al., Lancet 391 (2018) 2513-2524.

    53. [53]

      J.S. Smolen, A.L. Pangan, P. Emery, et al., Lancet 393 (2019) 2303-2311.  doi: 10.1016/S0140-6736(19)30419-2

    54. [54]

      R. Fleischmann, A.L. Pangan, I.H. Song, et al., Arthritis Rheumatol. 71 (2019) 1788-1800.  doi: 10.1002/art.41032

    55. [55]

      F. D'Amico, G. Fiorino, F. Furfaro, M. Allocca, S. Danese, Expert Opin. Invest. Drugs 27 (2018) 595-599.  doi: 10.1080/13543784.2018.1492547

    56. [56]

      T. Perez-Jeldres, C.J. Tyler, J.D. Boyer, et al., Front. Pharmacol. 10 (2019) 212.  doi: 10.3389/fphar.2019.00212

    57. [57]

      R. Panaccione, G.R. D'Haens, W.J. Sandborn, et al., Gastroenterology 156 (2019) S-170.

    58. [58]

      E. Guttman-Yassky, D. Thaçi, A.L. Pangan, et al., J. Allergy Clin. Immunol. (2019) 145 (2020) 877-884.  doi: 10.1016/j.jaci.2019.11.025

    59. [59]

      N. Wishart, M.A. Argiriadi, D.J. Calderwood, PCT/US2010/058572, 2011.

    60. [60]

      J.W. Voss, H.S. Camp, R.J. Padley, PCT/US2014/062145, 2015.

    61. [61]

      (a)V.A. Soloshonok, H. Ohkura, K.Uneyama, Tetrahedron Lett. 43 (2002) 5449-5452;
      (b) V.A. Soloshonok, T. Ono, I.V. Soloshonok, J. Org. Chem. 62 (1997) 7538-7539;
      (c) V.A. Soloshonok, V.P. Kukhar, Tetrahedron 52 (1996) 6953-6964.

    62. [62]

      A. Allian, J. Jayanth, M.E. Mohamed, et al., PCT/US2016/057372, 2017.

    63. [63]

      S. Oruganti, B. Kandagatla, S. Sen, et al., PCT/IB2018/055368, 2019.

    64. [64]

      R. Singh, U. Manjunatha, H.I.M. Boshoff, et al., Science 322 (2008) 1392-1395.  doi: 10.1126/science.1164571

    65. [65]

      S. Patterson, S. Wyllie, L. Stojanovski, et al., Antimicrob. Agents Chemother. 57 (2013) 4699-4706.  doi: 10.1128/AAC.00722-13

    66. [66]

      (a) M.A. Marsini, P.J. Reider, E.J. Sorensen, J. Org. Chem. 75 (2010) 7479-7482;
      (b) G.C. Moraski, A.G. Oliver, L.D. Markley, et al., Bioorg. Med. Chem. Lett. 24 (2014) 3493-3498.

    67. [67]

      S.J. Keam, Drug 79 (2019) 1797-1803.  doi: 10.1007/s40265-019-01207-9

    68. [68]

      W.R. Baker, C. Shaopei, E.L. Keeler, US 6087358, 2000.

    69. [69]

      P. Furet, V. Guagnano, R.A. Fairhurst, et al., Bioorg. Med. Chem. Lett. 23 (2013) 3741-3748.  doi: 10.1016/j.bmcl.2013.05.007

    70. [70]

      M. Gerspacher, R.A. Fairhurst, R. Mah, et al., Bioorg. Med. Chem. Lett. 25 (2015) 3582-3584.  doi: 10.1016/j.bmcl.2015.06.077

    71. [71]

      F. André, E. Ciruelos, G. Rubovszky, et al., N. Engl. J. Med. 380 (2019) 1929-1940.  doi: 10.1056/NEJMoa1813904

    72. [72]

      A. Markham, Drugs 79 (2019) 1249-1253.  doi: 10.1007/s40265-019-01161-6

    73. [73]

      (a) V.P. Sandanayaka, S. Shacham, D. Mccauley, S. Shechter, WO2013019548, 2013;
      (b) M. Garg, D. Kanojia, A. Mayakonda, et al., Oncotarget 8 (2017) 7521-7532

    74. [74]

      Y.Y. Syed, Drugs 79 (2019) 1485-1494.  doi: 10.1007/s40265-019-01188-9

    75. [75]

      A.R. Muthusamy, S.L. Kanniah, A. Ravi, et al., WO2018129227, 2018.

    76. [76]

      M. Menichincheri, E. Ardini, P. Magnaghi, et al., J. Med. Chem. 59 (2016) 3392-3408.  doi: 10.1021/acs.jmedchem.6b00064

    77. [77]

      D. Liu, M. Offin, S. Harnicar, B.T. Li, A. Drilon, Ther. Clin. Risk Manag. 14 (2018) 1247-1252.  doi: 10.2147/TCRM.S147381

    78. [78]

      R. Iyer, L. Wehrmann, R.L. Golden, et al., Cancer Lett. 372 (2016) 179-186.  doi: 10.1016/j.canlet.2016.01.018

    79. [79]

      G. Wei, R. Patel, C. Walsh, et al., Eur. J. Cancer 69 (2016) S33.

    80. [80]

      Z.T. AI-Salama, S.J. Keam, Drugs 79 (2019) 1477-1483.  doi: 10.1007/s40265-019-01177-y

    81. [81]

      C. Zhang, J. Zhang, P.N. Ibrahim, et al., WO2008064255, 2008.

    82. [82]

      P.N. Ibrahim, M. Jin, S. Matsuura, PCT Int. Appl. WO2016179412, 2016.

    83. [83]

      Y.N. Lamb, Drugs 79 (2019) 1805-1812.  doi: 10.1007/s40265-019-01210-0

    84. [84]

      D. Chen, Y. Zhang, J. Li, Y. Liu, Synthesis 51 (2019) 2564-2571.  doi: 10.1055/s-0037-1612421

    85. [85]

      D.L. Nelson, L.A. Phebus, K.W. Johnson, et al., Cephalalgia 30 (2010) 1159-1169.  doi: 10.1177/0333102410370873

    86. [86]

      M.D. Ferrari, M. Färkkilä, U. Reuter, et al., Cephalalgia 30 (2010) 1170-1178.  doi: 10.1177/0333102410375512

    87. [87]

      Y.J. Jin, X.W. Yang, X.X. Xie, H. Tian, Y.L. Cui, Drugs Clinic 31 (2016) 1300-1303.

    88. [88]

      Y.N. Lamb, Durgs 79 (2019) 1989-1996.

    89. [89]

      M.P. Cohen, D.T. Kohlman, S.X. Liang, V. Mancuso, F. Victor, PCT Int. Appl. WO200384949, 2003.

    90. [90]

      N.A. Meanwell, J. Med. Chem. 54 (2011) 2529-2591.  doi: 10.1021/jm1013693

    91. [91]

      (a) J.A. Ma, D. Cahard, J. Fluorine Chem. 128 (2007) 975-996;
      (b) A. Sato, M.V. Ponomarenko, T. Ono, G.V. Röschenthaler, V.A. Soloshonok, Eur. J. Org. Chem. 2019 (2019) 4417-4421;
      (c) H. Mei, J.L. Han, S. White, G. Butler, V.A. Soloshonok, J. Fluorine Chem. 227 (2019)109370;
      (d) C. Yang, A. Hassanpour, K. Ghorbanpour, S. Abdolmohammadi, E. Vessally, RSC Adv. 9 (2019) 27625-27639;
      (e) Z. Zhang, Adv. Synth. Catal. 359 (2017) 372-383;
      (f) S.L. Clarke, G.P. McGlacken, Chem. Eur. J. 23 (2017) 1219-1230;
      (g) Y. Ouyang, X.H. Xu, F.L. Qing, Angew. Chem. Int. Ed. 57 (2018) 6926-6929;
      (h) J. Kalim, T. Duhail, T.N. Le, et al., Chem. Sci. 10 (2019) 10516-10523.

    92. [92]

      (a) J. Han, O. Kitagawa, A. Wzorek, K.D. Klika, V.A. Soloshonok, Chem. Sci. 9 (2018) 1718-1739;
      (b) M.Yasumoto, H.Ueki, V.A.Soloshonok, J.FluorineChem.131 (2010)266-269.

    93. [93]

      (a) A.E. Sorochinsky, J.L. Aceña, V.A. Soloshonok, Synthesis 45 (2013) 141-152;
      (b) M. Yasumoto, H. Ueki, T. Ono, T. Katagiri, V.A. Soloshonok, J. Fluorine Chem. 131 (2010) 535-539.

    94. [94]

      (a) A.E. Sorochinsky, T. Katagiri, T. Ono, et al., Chirality 25 (2013) 365-368;
      (b) T. Nakamura, K. Tateishi, S. Tsukagoshi, et al., Tetrahedron 68 (2012) 4013-4017.

    95. [95]

      (a) H. Ueki, M. Yasumoto, V.A. Soloshonok, Tetrahedron Asymmetry 21 (2010) 1396-1400;
      (b) J. Han, D.J. Nelson, A.E. Sorochinsky, V.A. Soloshonok, Curr. Org. Synth. 8 (2011) 310-317.

    96. [96]

      (a) C. Xie, L. Wu, J. Han, V.A. Soloshonok, Y. Pan, Angew. Chem. Int. Ed. 54 (2015) 6019-6023;
      (b) J. Han, V.A. Soloshonok, K.D. Klika, J. Drabowicz, A. Wzorek, Chem. Soc. Rev. 47 (2018) 1307-1350.

    97. [97]

      (a) A. Henninot, J.C. Collins, J.M. Nuss, J. Med. Chem. 61 (2018) 1382-1414;
      (b) M.A.T. Blaskovich, J. Med. Chem. 59 (2016) 10807-10836;
      (c) D.R.W. Hodgson, J.M. Sanderson, Chem. Soc. Rev. 33 (2004) 422-430;
      (d) T. Sato, K. Izawa, J.L. Aceña, H. Liu, V.A. Soloshonok, Eur. J. Org. Chem. 2016 (2016) 2757-2774;
      (e) V.A. Soloshonok, K. Izawa, Asymmetric synthesis and application of α-amino acids, ACS Symposium Series 1009, Oxford University Press, Oxford, 2009;
      (f) S. Wang, Y. Wang, J. Wang, et al., Curr. Pharm. Des. 23 (2017) 4493-4554.

    98. [98]

      (a) D. Stepec, M. Ponikvar-Svet, Acta Chim. Slovenica 66 (2019) 255-275;
      (b) D. Stepec, G. Tavccar, M. Ponikvar-Svet, Environ. Pollut. 248 (2019) 958-964;
      (c) M. Ponikvar, V. Stibilj, B. Zemva, Food Chem.103 (2007) 369-374;
      (d) A. Koblar, G. Tavcar, M. Ponikvar-Svet, Food Chem.130 (2012) 286-290.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    3. [3]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    4. [4]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    5. [5]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    6. [6]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    7. [7]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    8. [8]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    9. [9]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    10. [10]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    11. [11]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    12. [12]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    13. [13]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    14. [14]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    15. [15]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    16. [16]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    17. [17]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    18. [18]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    19. [19]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    20. [20]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

Metrics
  • PDF Downloads(70)
  • Abstract views(2235)
  • HTML views(322)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return